
RSESLIB
User Guide

Arkadiusz Wojna
Rafaª Latkowski
�ukasz Kowalski

April 14, 2025

Contents

1 Introduction 5

2 Overview 7

2.1 Development and runtime environment 7

2.2 Modular component-based architecture 7

2.3 Processing algorithms . 8

2.4 Data-related objects . 10

2.5 Library structure . 11

3 Logging 12

4 Data 14

4.1 Formats . 14

4.1.1 ARFF . 14

4.1.2 CSV . 15

4.1.3 RSES2 . 16

4.2 Data header . 16

4.3 Data representation . 17

4.4 Data table and its statistics . 19

4.5 Loading and saving data . 20

4.6 Vectors and value distributions 21

1

5 Framework for algorithms 22

5.1 Input to algorithms . 22

5.2 Con�guration parameters . 23

5.3 Reporting progress . 25

5.4 Measuring time . 26

5.5 Statistics from computations . 26

5.6 Saving and loading . 27

6 Discretization 29

6.1 Applying discretization to data 29

6.2 Discretization types . 30

6.2.1 Equal Width . 30

6.2.2 Equal Frequency . 31

6.2.3 One Rule . 31

6.2.4 Static Entropy Minimization 32

6.2.5 Dynamic Entropy Minimization 32

6.2.6 ChiMerge . 33

6.2.7 Global Maximal Discernibility Heuristic 34

6.2.8 Local Maximal Discernibility Heuristic 34

7 Attribute evaluation 35

7.1 Approximation accuracy . 35

7.2 Attribute signi�cance . 36

8 Rough sets 37

8.1 Lower and upper approximation 37

8.2 Positive region . 38

9 Discernibility matrix 39

2

10 Reducts 42

10.1 Reduct types . 42

10.2 Reduct representation . 43

10.3 Computing reducts . 43

10.3.1 All global reducts . 44

10.3.2 All local reducts . 45

10.3.3 Johnson's reducts . 45

10.3.4 Partial reducts . 46

11 Rules 47

11.1 Rules representation . 47

11.1.1 Rule types . 47

11.1.2 Universal boolean function based rules 48

11.1.3 Optimized rules with equality descriptors 48

11.2 Generating rules . 49

11.2.1 Generating rules from reducts 49

11.2.2 AQ15 algorithm . 51

11.2.3 Exemplary rule generator 51

12 Classi�cation and experiments 52

12.1 Classi�ers . 52

12.2 Rule-based classi�ers . 53

12.3 Porting Rseslib-based classi�ers to Weka 54

12.4 Visualization . 55

12.5 Single classi�er test and classi�cation results 55

12.6 Training and testing many classi�ers 56

12.7 Crossvalidation and multiple tests 57

13 Classi�er types 59

13.1 Rough set based rule classi�er 59

13.2 K nearest neighbours / RIONA 62

13.3 K nearest neighbours with local metric induction 65

3

13.4 RIONIDA . 66

13.5 Decision tree C4.5 . 69

13.6 Rule classi�er AQ15 . 70

13.7 Neural network . 71

13.8 Naive Bayes . 72

13.9 Support vector machine . 74

13.10Classi�er based on principal components analysis 77

13.11Classi�er based on local principal components analysis 78

13.12Bagging . 78

13.13AdaBoost . 79

14 WEKA 80

15 QMAK: Interaction with classi�ers and their visualization 81

15.1 Extending QMAK . 82

16 SGM: Computing many experiments on many computers/cores 84

16.1 Experiment de�nition & running SGM Server 85

16.2 Running SGM-Node . 87

16.3 Cluster architecture and message relying 88

17 Command line programs 90

17.1 Calculate signi�cance of attributes 90

17.2 Compute and write reducts . 91

17.3 Compute and write rules . 92

17.4 Cross-validation on Rseslib classi�ers 93

17.5 Train and test Rseslib classi�ers 93

Bibliography 94

4

Chapter 1

Introduction

Rseslib is a library of tools, algorithms and data structures for rough sets and
machine learning implemented in Java.

Rough set theory [19] was introduced by Pawlak as a methodology for data anal-
ysis based on approximation of concepts in information systems. Discernibility
is a key concept in this methodology, which is the ability to distinguish objects,
based on their attribute values.

The library is not limited to rough sets, it contains and is open to concepts and
algorithms from other areas of machine learning and data mining. In particular,
it provides a unique platform for visualizing, explaining and interacting with
various machine learning models.

This user guide describes Rseslib version 3. The �rst version of the library
started in 1993 and was implemented in C++. Rseslib 2 was the �rst version
of the library implemented in Java and it stands for the core of Rough Set
Exploration System (RSES). The version 3 was entirely redesigned and all the
methods available in this version were implemented from scratch.

The main objectives of Rseslib 3 is to provide:

� an open source library of algorithms and computational models from rough
set theory and machine learning in Java

� highly reusable and substitutable components at very elementary level
unmet in other open source data mining Java libraries

� a platform for explainable and interactive machine learning

The algorithms in Rseslib 3 can be used both by users who need to apply ready-
to-use rough set or other machine learning methods in their data analysis tasks
as well as by researchers interested in extension of the exisiting methods who

5

can use the source code of the algorithms from the library as the basis for their
extended implementations. The library can be used also within the following
tools:

� QMAK - a dedicated graphical interface

� WEKA - a popular open source machine learning software

� Simple Grid Manager distributing computations over a network of com-
puters

The library is distributed under GNU GPL license.

If you publish your work using Rseslib 3 please cite the reference [34].

6

Chapter 2

Overview

2.1 Development and runtime environment

The Rseslib source code can be downloaded from http://rseslib.mimuw.edu.pl
or https://github.com/awojna/Rseslib.

The library is built with Java Development Kit 8 and Maven. The following
command will build rseslib-<version>.jar from the source code and copy
other needed libraries to Maven target directory:

mvn package

Rseslib algorithms can be used as Java code or Java jar library, or within QMAK
15, command-line programs 17, Simple Grid Manager 16 or WEKA 14.

2.2 Modular component-based architecture

Rseslib is designed to assure maximum reusability and substitutability of the
existing components in new components of the library. Hence a strong emphasis
is put on its modularity. The code is separated into loosely related elements as
small as possible so that each element can be used independently of other ele-
ments. For each group of the elements of the same type a standardizing interface
is de�ned so that each element used in an algorithm can be easily substituted
by any other element of the same type. Code separation and standardization is
applied both to the algorithms and to the objects.

The structure of rough set algorithms in Rseslib is one of the examples of the
component-based architecture (see Figure 2.1). Each of the six modules: Dis-
cretization, Logic, Discernibility, Reducts, Rules and Rough Set Classi�er pro-
vides well-abstracted algorithms with clearly de�ned interfaces that allow al-
gorithms from other modules to use them as their components. For example,

7

Figure 2.1: Examples of relations between Rseslib modules containing rough set
algorithms

the algorithms computing reducts from the Reducts module use a discernibil-
ity matrix from the Discernibility module and one of the methods computing
prime implicants of a CNF boolean formula from the Logic module. It is easy
to extend each module with implementation of a new method and to add the
new method as an alternative in all components using the module.

The component-based architecture of Rseslib makes it possible to implement
unconventional combinations of data mining methods. For example, percep-
tron learning is used as one of the attribute weighting methods in the algorithm
computing a distance measure between data objects. Estimation of value proba-
bility at given decision is another example of such combination: it uses k nearest
neighbors voting as one of the methods de�ning conditional value probability.

2.3 Processing algorithms

Rseslib provides many rough set and other algorithms including various classi�-
cation algorithms used in machine learning and data mining. Each algorithm is
available as a separate class or method and it is easy to use as an independent
component. That includes:

� Data transformation: missing value completion (non-invasive data im-
putation by Gediga and Duentsch), attribute selection, numerical attribute

8

scaling, new attributes (radial transformation, linear transformation, arith-
metic transformations)

� Discretization: equal width intervals, equal frequency intervals, Holte's
1R algorithm, entropy minimization (static and dynamic), ChiMerge al-
gorithm, maximal discernibility (MD) heuristic (global and local)

� Data �ltering: missing values �lter, Wilson's editing, minimal consistent
subset (MCS) by Dasarathy, universal boolean function based �lter

� Data sampling: with repetitions, without repetitions, with given class
distribution

� Data clustering: k approximate centers algorithm

� Data sorting: attribute value related, distance related

� Attribute evaluation: approximation accuracy, rough set based signif-
icance

� Rough set computation: lower and upper approximation of decision
class, positive region

� Discernibility matrix computation

� Reducts computation: all global, all local, greedy Johnson heuristic,
global partial, local partial

� Rule induction: from global reducts, from local reducts, AQ15 algorithm

� Metric induction: Hamming and Value Di�erence Metric (VDM) for
nominal attributes, city-block Manhattan, Interpolated Value Di�erence
Metric (IVDM) and Density-Based Value Di�erence Metric (DBVDM) for
numerical attributes, attribute weighting (distance-based, accuracy-based,
perceptron)

� Principal Component Analysis (PCA): OjaRLS algorithm

� Boolean reasoning: two di�erent algorithms generating prime implicant
from a CNF boolean formula

� Genetic algorithm scheme: a user provides cross-over operation, mu-
tation operation and �tness function only

� Classi�cation: rough set based rule classi�er, k nearest neighbours /
RIONA, k nearest neighbours with local metric induction, RIONIDA, C4.5
decision tree, AQ15 rule classi�er, classical neural network, naive bayes,
support vector machine, classi�er based on principal component analysis
(PCA), classi�er based on local principal component analysis (PCA)

� Metaclassi�cation: Bagging, AdaBoost

9

� Classi�er evaluation: single train-and-classify test, cross-validation,
multiple test with random train-and-classify split, multiple cross-validation
(all types of tests can be executed on many classi�ers)

2.4 Data-related objects

The algorithms listed in Section 2.3 usually transform one type of objects rep-
resenting data into another type. This section enumerates brie�y the types of
objects in the library implementing various data-related mathematical concepts
that constitute input and output of those algorithms and can be used as isolated
components:

� Basic: attribute, data header, data object, boolean data object, num-
bered data object, data table, nominal attribute histogram, numeric at-
tribute histogram, decision distribution

� Boolean functions/operators: attribute value equality, numerical at-
tribute interval, nominal attribute value subset, binary discrimination,
metric cube, negation, conjunction, disjunction

� Real functions/operators: scaling, perceptron, radius function, multi-
plication, addition

� Integer functions: discrimination (discretization, 3-value cut)

� Decision distribution functions: nominal value to decision distribu-
tion, numeric value to vicinity-based decision distribution, numeric value
to interpolated decision distribution

� Vector space: vector, linear subspace, principal components subspace,
vector function

� Linear order

� Indiscernibility relations

� Discernibility matrices: discerning all pairs of objects, pairs with dif-
ferent ordinary decisions, pairs with di�erent generalized decisions, pairs
with di�erent both generalized and ordinary decisions

� Reducts

� Rules: boolean function based rule, equality descriptors rule, partial
matching rule

� Distance measures: Hamming, Value Di�erence Metric (VDM), city-
block Manhattan, Interpolated Value Di�erence Metric (IVDM), Density-
Based Value Di�erence Metric (DBVDM), metric-based indexing tree

� Probability: gaussian kernel function, hypercube kernel function, m-
estimate

10

2.5 Library structure

As written in Java Rseslib source code is divided into packages. There are eight
main packages:

rseslib.system The most basic package providing classes and methods for
communication with an underlying operating system. It manages library con-
�guration and errors, and provides di�erent methods for reporting progress and
computation results.

rseslib.util The package providing useful methods extending standard Java
libraries.

rseslib.structure The �rst one of the two major packages. It covers all the
structures mentioned in Section 2.4 representing data and their models, as well
as mathematical objects and functions, constructed and used while running
Rseslib computations.

Each structure should provide saving and reading from a �le by implementing
java.io.Serializable interface.

Each structure should provide also text representation by implementing the
standard toString() method.

rseslib.processing The second one of the two major packages. It contains all
data processing methods enumerated in Section 2.3. Most of them implements
a certain transformation of one data representation into another one.

rseslib.qmak The package providing graphical user interface dedicated to
Rseslib.

rseslib.simplegrid The package with Simple Grid Manager, a tool for run-
ning Rseslib-based experiments on many computers or cores.

rseslib.example The package providing examples of library usage from com-
mand line.

weka.classi�ers The package connecting Rseslib to Weka. It contains the
classes wrapping Rseslib classi�ers that are recognized and provided to users by
Weka tools.

11

Chapter 3

Logging

The main class for reporting messages and errors is the class Report (the
rseslib.system package). It enables to direct control and error messages to
di�erent output channels depending on a type of application using Rseslib, for
example to a console, a �le or a GUI window. At the beginning each pro-
gram needs to initialize the Report class with the type of channels used by
the application. The package rseslib.system provides a number of prede�ned
channels:

� StandardOutput is the standard output

� StandardErrorOutput is the standard error output

� StandardDebugOutput is the standard output used for debugging mes-
sages

� FileOutput is the channel for writing to a �le

Users can de�ne their own speci�c channel types. They can connect more the one
channel in the same program to report messages or errors, e.g. StandardOutput
to get information on a console and FileOutput to save messages in a �le or
any user-de�ned channels.

Three kinds of messages are generated by Rseslib:

Error messages Rseslib algorithms use the class Report to handle the error
types that do not require to stop whole procedure or program, for example an
incorrect parameter of a particular algorithm or an error in a single classi�er
while testing many algorithms or classi�ers. In such situations an Rseslib proce-
dure calls the method Report.exception(Exception) providing an exception
and continues.

12

The exception() method reports errors to the connected channels. To connect
channels for errors an application needs to call the method Report.addErrorOutput(Output)
for each channel to be connected at the begining of the program.

Information messages Information messages enable to communicate about
the e�ects and the results of Rseslib algorithms. Like error messages they can
be written to the console, to a �le or to a graphical interface window de�ned by a
user. The application needs to use the method Report.addInfoOutput(Output)
at the begining of the program to connect channels for information messages.
Later it needs to use the methods Report.display(Object) and Report.displaynl(Object)
providing the objects obtained as the results of Rseslib procedures. These two
methods writes the results to the connected channels. They use the standard
method toString() of the objects returned by Rseslib procedures. While ex-
tending Rseslib with new algorithms the objects representing the results are
always expected to implement the toString() method so that the results
can be handled uniformly by other users with the help of the Report class.
One can turn information messages o� and on in a whole program or in a
particular part of a program by calling Report.setInfoDisplay(false) and
Report.setInfoDisplay(true) respectively.

Debugging messsages Debugging messages are used only in the phase of
development of new methods. They are used to provide control messages ver-
ifying the correctness of implemented algorithms. Like for error and infor-
mation messages any number of channels can be connected using the method
Report.addDebugOutput(Output). Users can use the method Report.debugnl(String)
to write debugging messages to the connected channels. The method
Report.setDebugDisplay(boolean) turns debugging messages on and o� in
selected parts of a program.

Warning! If any channel for error, debugging or information messages was
connected, at the end of a program it is good to use Report.close() to close
all the used channels.

13

Chapter 4

Data

At present the algorithms in Rseslib are based on classical representation of data
in machine learning. It is assumed that a set of objects is described by a set
of conditional attributes and a decision attribute. Each object is represented
by a vector of values corresponding to particular attributes. The type of a
conditional attribute can be either numerical, if its values are comparable and
can be represented by numbers (e.g.: age, temperature, height), or nominal, if
its values are incomparable, i.e., if there is no linear order in the domain of the
attribute values (e.g.: color, sex, shape). A data header describing the attribute
types and data objects are the main components of data representation.

The library contains many algorithms implementing various methods of super-
vised learning. These methods assume that each object is assigned with a value
of the decision attribute called a decision class and they learn from a training
set a function approximating the real decision function on all objects outside the
training set. At present the algorithms in the library assume that the domain
of values of the decision attribute is discrete and �nite.

4.1 Formats

Data are provided in �les. The �les need to contain a header describing the
attribute types (columns) and data in the tabular form. Each object is rep-
resented by a single line containing the row with the attribute values. Rseslib
reads 3 data formats: ARFF , CSV and RSES2.

4.1.1 ARFF

The format of the very popular open source machine learning software WEKA
widely adopted in the machine learning community. The format description

14

is available in WEKA documentation at http://www.cs.waikato.ac.nz/ml/weka.
Rseslib jar does not include Weka jar so to load an ar� �le a Weka jar must be
provided in the class path while starting your program using Rseslib, e.g.:

java -cp ...weka.jar...

A user can �nd a Weka jar in the target directory after building Rseslib source
with Maven or in Rseslib release package at http://rseslib.mimuw.edu.pl.

4.1.2 CSV

Comma Separated Version - a popular format that can be exchanged between
databases, spreadsheet programs like Microsoft Excel or Libre O�ce and soft-
ware recognizing this format like Rseslib.

Values in the rows of data may be separated by comma and/or whitespaces.
Comments (lines starting with '#') and empty lines are allowed.

This format requires an additional header describing data. A header may be
provided in two ways:

� by adding the header at the beginning of the data �le, in this case the
header must be enclosed with the lines indicating the beginning and the
the end of the header. The line starting the header must contain the
\beginheader tag, the line ending the header must contain the \endheader
tag.

� by providing a separate �le with the header; this option enables to use the
CSV �le without any extra conversion and eliminates the inconvenience
of altering large �les in case of very large data sets.

A header �le contains description of all attributes, one attribute per one header
line. Optionally, it can contain a separate line de�ning missing value string.
Comments (lines starting with '#') and empty lines are also allowed.

Each attribute line starts with the attribute name. Next two keywords are
required. The �rst keyword de�nes the role of the attribute: conditional

is used by classi�ers in learning, decision is the attribute to be guessed by
classi�ers, text is only a descriptive attribute, doesn't take part in learning
and classi�cation. The abbreviations c, d, t may be used instead of the full role
name. The second keyword de�nes the type of the attribute values: numeric

or nominal. The abreviations nu and no may be used instead of the full type
name. Optionally one can add skip as the third keyword - then the attribute
is ignored while loading the data.

Missing values are de�ned in the optional line starting with the keyword missing_value
and followed by the list of strings (separated by comma and/or whitspaces) rep-
resenting a missing value. It means it is possible to have more than one notation

15

for missing value in a single data �le.
The example of a CSV header:

my comment

missing_value ?

id text, nominal, skip

attr1 conditional, numeric

attr2 conditional, nominal
...

class decision, nominal

Exemplary data sets in CSV format with headers are available at
http://rseslib.mimuw.edu.pl.

4.1.3 RSES2

Format of the RSES2 system. The format description is available in the RSES2
documentation at http://logic.mimuw.edu.pl/~rses.

4.2 Data header

All classes related to header representation are provided in the package
rseslib.structure.attribute.

A data header represents a set of attributes describing data. The Header inter-
face provides the basic header functionality. The method noOfAttr() returns
the number of attributes including a decision attribute if data are provided with
a decision class. The attributes in a header are indexed from 0 to noOfAttr()-1.
The method attribute(int i) in the Header interface returns the representa-
tion of the i-th attribute implementing the interface Attribute. The name of
each attribute can be obtained using the method name(). Attributes are cate-
gorized according to the type of their values: each attribute is either numerical
(isNumeric() returns true and the attribute is represented by an object of the
NumericAttribute class) or symbolic (isNominal() returns true and the at-
tribute is represented by an object of the NominalAttribute class). Attributes
are categorized also according to their roles in classi�cation: each attribute is
either conditional (isConditional() returns true), decision (isDecision()
returns true) or it is ignored in classi�cation (isText() returns true).

Data representiation in Rseslib can handle data with many decision attributes
and data with no decision attribute. In the popular case of data with exactly

16

one symbolic decision attribute two additional methods from the Header inter-
face can be helpful. The method decision() returns the index of the decision
attribute and the method nominalDecisionAttribute() provides the repre-
sentation of the decision attribute.

All data structures related to a given header implement the interface Headerable
(the rseslib.structure package). The interface provides the method attributes()
that returns a header representation implementing the Header interface.

4.3 Data representation

The classes representating single data objects are provided in the package
rseslib.structure.data.

The interface DoubleDataWithDecision extending the DoubleData interface is
the basic interface for representation of an object with a single decision in the
form of an attribute value vector. Attribute values in this interface are rep-
resented by the double type. The methods set(int attr, double val) and
get(int attr) are used to set and obtain attribute values, setDecision(double
val) and getDecision() are used to set and obtain the decision value. Decision
values can bet set and obtained with the set() and get() methods like con-
ditional attributes, the extra methods are provided just for convenience. Each
data object is related to its header provided by the method attributes().

The values of numerical attributes (attributes().isNumeric(attr)==true)
are provided directly by the get() method, e.g.:

DoubleData dData;
...

System.out.println(�Attr. 0 value = � + dData.get(0));

Symbolic values (attributes().isNominal(attr)==true) are coded in data
objects with numbers. To encode and decode the values of a given symbolic at-
tribute the methods globalValueCode(String value) and stringValue(double
valueCode) of the corresponding NominalAttribute object are used, e.g.:

DoubleData dData;

String value;
...

NominalAttribute attr0 = (NominalAttribute)dData.attributes().attribute(0);

dData.set(0, attr0.globalValueCode(value));

System.out.println(

�Attr. 0 value = � + NominalAttribute.stringValue(dData.get(0));

17

The code of a symbolic value is global and it is the same across all data tables
loaded in a single execution of an Rseslib-based program. It is also globally
unique: two di�erent string values have di�erent codes even if the values are
from di�erent data tables. It means that to check whether two symbolic values
are equal or not it is enough to compare their codes regardless of whether the
values are from the same table or not.

In case of data with single symbolic decision the values in the setDecision

and getDecision methods are global codes than can be translated to strings
using the same globalValueCode and stringValue methods as for conditional
symbolic attributes.

For the sake of performance many implemented algorithms use arrays whose
values relate to symbolic values of a single attribute in a given data set, e.g.
the value histogram. The indices of such an array represent the di�erent val-
ues of an attribute. To facilitate the use of such arrays for each symbolic
attribute Rseslib provides local mapping of its values to successive indices.
Each NominalAttribute object has the method noOfValues() returning the
number of di�erent values of the attribute occurring in a data table. The
symbolic values of the attribute are assigned with the local indices from 0 to
noOfValues()-1. The methods localValueCode(double globalValueCode)

and globalValueCode(int localValueCode) are used to translate global value
codes into local indices and vice versa.

Missing values, occuring when data are incomplete or some values are unde�ned,
are represented by Double.NaN both for numerical and for symbolic attributes.
To check whether an attribute value is unde�ned and to compare it with the
attribute values of other objects the method Double.isNaN(double attrVal)

must be used. The operators ==, !=, < <= can be used only to de�ned at-
tribute values.

Warning! While implementing serialization of data-related objects using sym-
bolic values the global value codes can not be serialized as they can change
between di�erent executions of Rseslib-based programs. Use one of the two
other options:

� serialize original strings representing symbolic values; the global codes
can be obtained with the globalValueCode(String value)method while
deserializing the values,

� serialize the local value codes along with the NominalAttribute object or
with the whole header; they preserve local value codes.

Warning! While implementing learning, classi�cation or other algorithms using
data objects it is important to remember that the noOfAttr() method includes
all attributes regardless of whether an attribute is conditional, decision or to
be ignored. To iterate over the attributes of a particular role a user needs to
apply extra check while using the values of an object. For example, to iterate

18

over the values of the conditional attributes only and to skip the decision the
isConditional() check is required:

DoubleData dDat;
...

for (int attr = 0; attr < dDat.attributes().noOfAttr(); attr++)

if (dDat.attributes().isConditional(attr)) {

// use the value of attr-th attribute

}

4.4 Data table and its statistics

Classes for representing data tables are provided in the package rseslib.stucture.table.

The DoubleDataTable interface is the main interface for representing a set
of data objects. The interface provides a number of methods: the method
attributes() returns the header of data, add(DoubleData dData) adds an
object to a set, remove(DoubleData dData) removes an object from a set,
noOfObjects() returns the number of objects in a set. The simple scheme
of data table processing is:

DoubleDataTable table;
...

for (DoubleData dData : table.getDataObjects()) {

// do something with dData object
...

}

In case of a data table with exactly one symbolic decision attribute, the inter-
face DoubleDataTable provides the decision distribution with the help of the
getDecisionDistribution() method. It returns an array, the number of ob-
jects in the table with a given decision is provided at the position of the array
equal to the local code of the decision value. The mapping betwen the decision
values and their local codes can be obtained from the NominalAttribute object
representing the decision attribute returned by the
attributes().nominalDecisionAttribute() method.

If the decision attribute has two decision classes its NominalAttribute object
provides the getMinorityValueGlobalCode()method that returns the decision
value of the decision class that is minority in the data table.

The value distribution of conditional symbolic attributes can be obtained with
the help of the method getValueDistribution(int attr). Simple statistics

19

of numerical attributes like minimum, maximum, mean or standard deviation
are provided by the method getNumericalStatistics(int attr).

The DoubleDataTable interface has also a number of methods splitting a given
table randomly into smaller tables including strati�ed partition.

The standard implementation of the DoubleDataTable interface is the class
ArrayListDoubleDataTable. In particular, this class implements the method
toString() providing di�erent statistics of a table in a human-readable format
including the decision distribution in case of a table with exactly one symbolic
decision attribute.

4.5 Loading and saving data

To save and load data in ARFF format a Weka jar must be added to the class
path (see Section 4.1.1).

To load data from a �le one of ArrayListDoubleDataTable constructors can
be used.

To load data from a �le containing a header (ARFF, CSV including a header and
RSES2 formats) the constructor ArrayListDoubleDataTable(File,Progress)
is used, e.g.:

DoubleDataTable table = new ArrayListDoubleDataTable(

new File(�data/heart.dat�),

new StdOutProgress());

The second argument is an object reporting the progress on load (see Section
5.3).

To load data from a CSV �le with a separate header �le, �rst the header is
loaded using the constructor ArrayHeader(File), then the constructor
ArrayListDoubleDataTable(File,Header,Progress) is used to load the data,
e.g.:

Header hdr = new ArrayHeader(new File(�data/segment.hdr�));

DoubleDataTable table = new ArrayListDoubleDataTable(

new File(�data/segment.trn�),

hdr,

new StdOutProgress());

The same header object may be used to load more than one CSV �les of the
same type, e.g.:

20

Header hdr = new ArrayHeader(new File(�data/segment.hdr�));

DoubleDataTable trnTable = new ArrayListDoubleDataTable(

new File(�data/segment.trn�),

hdr,

new StdOutProgress());

DoubleDataTable tstTable = new ArrayListDoubleDataTable(

new File(�data/segment.tst�),

hdr,

new StdOutProgress());

It is possible to load only the header from a �le containing both a header and
data by using the same constructor ArrayHeader(File) as for header �les.

Tables can be saved in two formats: ARFF and CSV. The saved table can be
loaded again using one of the described ArrayListDoubleDataTable construc-
tors. To save data in ARFF format the method storeArff(String,File,Progress)

is used. The �rst argument is the name of the data set required by ARFF for-
mat. To save data in CSV format the method store(File,Progress) is used.
The data are saved with Rseslib header added at the beginning of the �le.

4.6 Vectors and value distributions

The class Vector from the rseslib.stucture.vector package combines fea-
tures of a value distribution and a vector. It is used to represent distributions of
attribute values including decision distributions providing methods for count-
ing values, and to represent vectors in a vector space providing a large set of
operations on vectors.

21

Chapter 5

Framework for algorithms

5.1 Input to algorithms

There are two categories of classes implementing algorithms and computational
methods in Rseslib:

� the classes that take some data-related objects as input and produce other
data-related objects like the classes implementing data transformation or
computation of reducts and rules

� the classes that take some data-related objects as input and represent
complex models per se like classi�ers

In case of the �rst category of classes it is enough to implement the interface
dedicated to a particular type of an algorithm to be implemented. The interface
de�nes the type of input required by a particular type of algorithms. E.g. data
transformation methods need to implement the Trasformer interface or the
more specialized AttributeTransformer interface.

The second category needs to implement an appropriate interface too but it
is expected also to provide appropriate constructors. It is assumed that the
constructors take all data structures required to build a model as arguments
and after a constuctor is �nished the constructed object represents a ready-to-
use model.

A class can provide more than one constructor depending on how much the
input to the algorithm is processed. Constructors with partially precomputed
input may be helpful while running repetitive experiments that do not require
recalculation of whole models from scratch. Using precomputed input a user
may decrease time needed to run experiments. For example, the rough set
classi�er class can provide a constructor taking only a data table as input,

22

another constructor that takes already computed reducts as input but still it
needs a data table to calculate the rules and a constructor with computed rules
as input:

public RoughSetRules(Properties prop,

DoubleDataTable trainingSet) {

// this constructor generates reducts and rules
...

}

public RoughSetRules(Properties prop,

Collection<BitSet> reducts,

DoubleDataTable trainingSet) {

// this constructor generates rules
...

}

public RoughSetRules(Properties prop,

Collection<Rule> rules) {

// this constructor stores rules only
...

}

5.2 Con�guration parameters

Classes implementing algorithms and computational methods expose usually
con�guration parameters. For example, the discretization type, the discernibil-
ity matrix type and the type of reducts are the parameters of the algorithm
generating rules from reducts and the metric type and the number of neigh-
bours are the parameters of k nearest neighbours classi�er. Rseslib provides a
framework for con�gurable classes with the class Configuration and it uses the
standard java.util.Properties class to represent parameters.

While implementing a class with con�guration a user needs to satisfy the fol-
lowing requirements:

� Provide a con�guration �le with default parameters values; the �le must
be located in the resources in the same path as the con�gurable class and
its name must be the same as the class name with the extension .proper-
ties, for example:
for the class rseslib.processing.rules.ReductRuleGenerator
the correct path for the con�guration �le is
rseslib/processing/rules/ReductRuleGenerator.properties
Each line in a con�guration �le is either the de�nition of a default param-
eter value or a comment (beginning with the # character):

23

discretization type

Discretization = EqualWidth

number of intervals

DiscrNumberOfIntervals = 5
...

� Inherit from the class Configuration (the rseslib.system package) and
provide a constructor with the parameters on the list of arguments. The
�rst line of the constructor must call 1-argument constructor of the super-
class passing the parameters as the argument, for example:

public class MyAlgorithm extends Configuration {

public MyAlgorithm(Properties params, ...) {

super(params);
...

}
...

}

Describing the parameters and their possible values using comments in the con-
�guration �le is recommended good practice.

The implementation of a con�gurable class can use the parameter values by call-
ing the getProperty(String propertyName) method. In case of boolean, in-
teger and real-value parameters the more specialized methods: getBoolProperty,
getIntProperty and getDoubleProperty can be used.

A user can run an algorithm providing con�guration in two ways:

� by providing null as the parameters to the algorithm, it makes the algo-
rithm use the default parameter values de�ned in the con�guration �le,
e.g.:

roughCl = new RoughSetRules(null, ...);

� by de�ning parameters in a program and passing them to the constructor,
e.g.:

Properties props = Configuration.loadDefaultProperties(

RoughSetRules.class);

props.setProperty(�Discretization�, �EqualFrequency�);

props.setProperty(�DiscrNumberOfIntervals�, �8�);

roughCl = new RoughSetRules(props, ...);

If an algorithm have many parameters and most parameters used to run the
algorithm have default values a user may load the default values using the
loadDefaultProperties(Class configurableClass)method and set only non-
default values as in the example above.

24

5.3 Reporting progress

Computational methods that can run several seconds or more, are expected
to report progress. The package rseslib.system.progress provides classes
implementing progress reporting.

The interface Progress is the base interface for classes reporting progress. A
constructor or a method implementing long lasting computations is expected to
accept the Progress interface on the list of its arguments. The interface has
two methods: the method set(String name, int noOfSteps) is called once
at the beginning of computations providing a message describing computations
and de�ning the number of steps. The method step() is used to notify the
progress each time a subsequent step is completed. The number of steps should
be de�ned so that noti�cation of each step completion is easy and time of steps
is as close as possible. It should not be too small to assure enough progress
granulation e.g.:

public MyIndexingSet(..., Progress prog) {
...

prog.set(�Indexing the data set�, <�<data set size>�>);

for every objects in the set

index it

prog.step();

}

If a method runs more than one component methods such that each of them
can last long and each reports progress the class MultiProgress provides a
mechanism enabling to merge the progress from all component methods into
one continuous progress. To use a MultiProgress object a user needs to de�ne
the progress proportion between component methods. The following example
de�nes the rough set classi�er running 3 methods: discretization, computation
of reducts and generation of rules and combining the progress of these 3 methods
with the proportion 1:6:2:

public RoughSetRules(..., Progress prog) {

int[] proportion = { 1, 6, 2 };

Progress combinedProg = new MultiProgress(

�Training the rough set classifier�,

prog, proportion);

generateDiscretization(combinedProg);

computeReducts(combinedProg);

generateRules(combinedProg);

}

For reporting progress to the standard output of a program the class StdOutProgress

is provided. After each 2% of progress the StdOutProgress object writes a new

25

marker. To report the progress to the standard output pass the object to the
method being run, e.g.:

indexingSet = new MyIndexingSet(..., new StdOutProgress());

If a user does not need any information about progress they can pass the
EmptyProgress object as the argument.

5.4 Measuring time

The class Timers from the package rseslib.util.time provides methods for
measuring time of computations. The class provides a set of timers. A user
may use concurrently as many timers as they need. Each timer can be run (the
start()method), paused (the stop()method) and reset (the reset()method)
many times. Each timer provides two values. The method getCumulatedTime()
returns the total time in miliseconds since the last reset or since the initial start
of the timer (if never reset) and the method getTime() returns the time in
miliseconds since the end of the last pause.

5.5 Statistics from computations

Algorithms can provide some statistics from computations or about constructed
computational models, e.g. the number of rules generated or the number of
nodes of a decision tree.

Rseslib provides a common framework for handling such statistics with the
class ConfigurationWithStatistics (the package rseslib.system). If a user
wishes to provide statistics in a given class implementing an algorithm the
class must inherit from the ConfigurationWithStatistics class and imple-
ment the methods calculateStatistics() and resetStatistics(). The
calculateStatistics() method calls the method addToStatistics(String

name, String value) for each computed statistics, e.g.:

int noOfReducts, noOfRules;
...

void calculateStatistics() {

addToStatistics(�Number of reducts�,

Integer.toString(noOfReducts));

addToStatistics(�Number of rules�,

Integer.toString(noOfRules));

}

26

Statistics can be collected over many calls to an object representing a compu-
tational model, e.g. they can be collected in a classi�er from many calls of the
classify() method. The method resetStatistics() is used to notify the
object to reset statistics calculation.

The statistics can be obtained from objects providing statistics by calling the
method getStatistics().

5.6 Saving and loading

To enable saving data-related objects and computed models to a �le and reload-
ing them later the classes representing them are expected to implement the
standard java.io.Serializable interface.

Warning! To avoid enforcing implementation of the java.io.Serializable

interface by all con�gurable classes with statistics (extending the
ConfigurationWithStatistics class), the ConfigurationWithStatistics class
does not implement this interface, but provides the serialization methods:
writeConfigurationAndStatistics(ObjectOutputStream) and
readConfigurationAndStatistics(ObjectInputStream). While implement-
ing serialization in a con�gurable class with statistics, a user needs always to
implement the methods from the Serializable interface explicitly calling the
writeConfigurationAndStatistics and readConfigurationAndStatistics

methods inside.

Warning! By analogy, while implementing serialization in a con�gurable class
without statistics (extending the Configuration class) a user needs always to
implement the methods from the Serializable interface explicitly calling the
writeConfiguration and readConfiguration methods inside.

To save a serializable object in a �le use the standard java.io.ObjectOutputStream
class, e.g.:

RoughSetRules roughCl;
...

File file = new File("obj/my_rough.cl");

ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream(file));

out.writeObject(cl);

out.close();

To reload a saved object from a �le use the standard java.io.ObjectInputStream
class, e.g.:

File file = new File("obj/my_rough.cl");

27

ObjectInputStream in = new ObjectInputStream(

new FileInputStream(file));

Classifier cl = (Classifier)in.readObject();

in.close();

28

Chapter 6

Discretization

Discretization (known also as quantization, binning or bucketing) is data trans-
formation that converts data from numeric attributes into nominal attributes.
Some algorithms require data in the form of nominal attributes, e.g. some rule
based algorithms like the rough set based classi�er.

Rseslib provides a number of discretization methods. Each method computes
a number of cuts for each numerical attribute from a given data set. The cuts
de�ne a number of disjoint intervals. The numerical values from each interval
are represented by a single nominal value in a discretized attribute.

Interfaces and classes for discretizations are provided in the packages
rseslib.processing.discretization and rseslib.processing.transformation.

6.1 Applying discretization to data

Each discretization is assumed to implement the interface Transformer from
the rseslib.processing.transformation package. The interface provides the
method transformToNew(DoubleData dObj) that returns the discretized rep-
resentation of an input data object.

If a user needs to discretize the whole data table that can be done using the static
method transform(DoubleDataTable table, Transformer transformation)

from the TableTransformer class (the package
rseslib.processing.transformation). The header of a discretized table is
di�erent from the header of the original table: all attributes in the discretized
table are nominal. The nominal values of discretized attributes are described
by value ranges of the original numerical attributes.

The methods generating discretizations implement the interface
TransformationProvider (the package rseslib.processing.transformation).

29

This interface provides the method generateTransformer(DoubleDataTable

table). The method returns a generated discretization of the type Transformer.

The following example discretizes a table using the local Maximal Discernibility
heuristic method:

DoubleDataTable table;
...

TransformationProvider method = new MDLocalDiscretizationProvider();

Transformer discretization = method.generateTransformer(table);

DoubleDataTable discretizedTable =

TableTransformer.transform(table, discretization);

Some discretization methods have parameters. The constructor of the classes
implementing such methods takes the parameter values as its argument (see
Section 5.2). Providing null as the parameters makes a parameterized method
use its default parameter values.

6.2 Discretization types

More detailed description and experimental comparison of available discretiza-
tion methods can be found in [10].

6.2.1 Equal Width

Author: Rafaª Latkowski

Class path:

rseslib.processing.discretization.RangeDiscretizationProvider

Description:

The range of values of a numerical attribute in a data set is divided into k
intervals of equal length. The number of intervals k is the parameter of the
method.

Parameters:

� DiscrNumberOfIntervals - the number of intervals for each numerical at-
tribute.

30

6.2.2 Equal Frequency

Author: Rafaª Latkowski

Class path:

rseslib.processing.discretization.HistogramDiscretizationProvider

Description:

The range of values of a numerical attribute in a data set is divided into k
intervals containing the same number of objects from a data set. The number
of objects in particular intervals may di�er by one if the size of the data set does
not divide by k. The number of intervals k is the parameter of the method.

Parameters:

� DiscrNumberOfIntervals - the number of intervals for each numerical at-
tribute.

6.2.3 One Rule

Author: Marcin Jaªmu»na

Class path:

rseslib.processing.discretization.OneRuleDiscretizationProvider

Description:

Holte's 1R algorithm [9] tries to cut the range of values of a numerical attribute
into intervals containing training objects with the same decision but it avoids
very small intervals. The minimal number n of training objects that must fall
into each interval is the parameter of 1R algorithm. The algorithm executes the
following steps:

1. Sort the objects by the values of a numerical attribute to be discretized

2. Scan the objects in the ascending order adding them to an interval until
one of the decision classes, denote it by d, has n representatives in the
interval

3. While the decision of the object next in the ascending order is d add the
object to the interval

4. Start the next interval as empty and go to 2

Parameters:

� DiscrMinimalFrequency - the minimal number of data objects that must
fall into each interval generated by 1R algorithm.

31

6.2.4 Static Entropy Minimization

Author: Marcin Jaªmu»na

Class path:

rseslib.processing.discretization.EntropyMinStaticDiscretizationProvider

Description:

Static entropy minimization [5] is a top-down local method discretizing a single
numerical attribute. It starts with the whole range of values of the attribute
in a data set and divides it into smaller intervals. At each step the algorithm
remembers which objects from the data set fall into each interval. In a single
step the algorithm searches all possible cuts in all intervals and selects the new
cut c maximizing information gain, i.e. minimizing entropy:

E(ai, c, S) =
|S1|
|S|

Ent(S1) +
|S2|
|S|

Ent(S2) (6.1)

where

Ent(S) = −
m∑
j=1

|{x ∈ S : dec(x) = dj}|
|S|

log

(
|{x ∈ S : dec(x) = dj}|

|S|

)
ai is the attribute to be discreatized, S is the set of the objects falling into
the interval on ai containing a candidate cut c, S1 = {x ∈ S : xi ≤ c}, S2 =
{x ∈ S : xi > c}.

The method applies the minimum description length prinicple to decide when
to stop the algorithm.

6.2.5 Dynamic Entropy Minimization

Author: Marcin Jaªmu»na

Class path:

rseslib.processing.discretization.EntropyMinDynamicDiscretizationProvider

Description:

Dynamic entropy minimization method [5] is similar to static entropy minimiza-
tion but it discretizes all numerical attributes at once. It starts with the whole
set of objects and splits it into two subsets with the optimal cut selected from
all numerical attributes. Then the algorithm splits each subset recursively scan-
ning all possible cuts over all numerical attributes at each split. To select the
best cut the algorithm minimizes the same formula 6.1 as the static method.

On average the dynamic method is faster than the static method and produces
fewer cuts.

32

6.2.6 ChiMerge

Author: Marcin Jaªmu»na

Class path:

rseslib.processing.discretization.ChiMergeDiscretizationProvider

Description:

ChiMerge [12] ia a bottom-up discretization method using χ2 statistics to test
whether neighbouring intervals have signi�cantly di�erent decision distributions.
If the distributions are similar the algorithm merges the intervals into one in-
terval. The method discretizes each numerical attribute independently.

The method has two parameters. The �rst parameter n is the minimal number
of �nal intervals. The second parameter is the con�dence level (0.0− 1.0) used
to recognize two neighbouring intervals as di�erent and not to merge them.

First, the algorithm calculates the threshold θ from χ2 distribution with m −
1 degrees of freedom and a given con�dence level and starts with a separate
interval for each value of a numerical attribute occuring in a data set U . At
each step it merges the pair of neighbouring intervals with the minimal χ2 value
as long as this minimal value is less then θ and the number of intervals does not
drop below n. χ2 value is de�ned as:

χ2(S1, S2) =

m∑
j=1

(∣∣∣Sj
1

∣∣∣− ESj
1

)2

ESj
1

+

m∑
j=1

(∣∣∣Sj
2

∣∣∣− ESj
2

)2

ESj
2

where S1, S2 are the sets of objects from U falling into two neighouring intervals,
Sj
k = {x ∈ Sk : dec(x) = dj} and ESj

k is the expected number of objects in Sk

with the decision dj :

ESj
k = |Sk|

|{x ∈ S1 ∪ S2 : dec(x) = dj}|
|S1 ∪ S2|

Parameters:

� DiscrCon�denceLevelForIntervalDi�erence (0.0−1.0) - the con�dence level
required to consider two neighbouring intervals as di�erent and not to
merge them by ChiMerge method.

� DiscrMinimalNumberOfIntervals - the minimal number of intervals for
each numerical attribute generated by ChiMerge method.

.

33

6.2.7 Global Maximal Discernibility Heuristic

Author: Marcin Jaªmu»na

Class path:

rseslib.processing.discretization.MDGlobalDiscretizationProvider

Description:

Global maximal discernibility heuristic method [16] is a top-down dynamic
method discretizing all numerical attributes at once. At each step it evalu-
ates cuts globally with respect to the whole training set. It starts with the set
S∗ of all pairs of objects with di�erent decisions de�ned as:

S∗ = {{x, y} ⊆ U : dec(x) ̸= dec(y)}

At each step the algorithm �nds the cut c that discerns the greatest number of
pairs in the current set S∗, adds the cut c to the result set and removes all pairs
discerned by the cut c from the set S∗. The optimal cut is searched among all
possible cuts on all numerical attributes. The algorithm stops when the set S∗

is empty.

6.2.8 Local Maximal Discernibility Heuristic

Author: Marcin Jaªmu»na

Class path:

rseslib.processing.discretization.MDLocalDiscretizationProvider

Description:

Local maximal discernibility heuristic method [16] selects the cuts optimizing
the number of pairs of discerned objects like the global method but the procedure
selecting the best cut is applied recursively to the subsets of objects obtained
by splitting the data set by the proviously selected cuts.

It starts with the best cut for the whole training set U splitting it into subsets
U1 and U2. Next the discretization algorithm selects the best cut splitting U1

and recursively the best cuts with respect to the subsets of U1. Next it searches
independently for the best cuts for U2. At each step the best cut is searched
over all attributes.

34

Chapter 7

Attribute evaluation

The library provides the algorithms evaluating conditional attributes in a data
table in terms of how signi�cant they are for the decision attribute.

7.1 Approximation accuracy

Author: Arkadiusz Wojna

Class path:

rseslib.processing.evaluation.attribute.RoughSetEvaluator

Description:

Rough set thoery provides a measure evaluating accuracy of approximation of
the decision attribute by any subset of conditional attributes [19].

Let U be a data table, A be a set of conditional attributes describing U , and
dec : U → Vdec be a decision attribute. For each decision value di ∈ Vdec let Di

be its decision class in the data table U :

Di = {x ∈ U : dec(x) = di}

The strength of approximation of the decision attribute dec by a subset of
attributes B ⊆ A in a data table U is de�ned formally as

γ(B) =

∑
di∈Vdec

|B(Di)|
|U |

where B(Di) is lower approximation of the decision class Di (see Section 8.1).

35

γ(B) is called the dependency degree of the decision attribute dec on the set of
attributes B or the approximation accuracy for the set B. The values of the γ
measure range between 0 and 1.

The method approximationAccuracy(int[] attributes, DoubleData[] objs)

in the RoughSetEvaluator class calculates the value of the γ coe�cient for the
set of objects objs and the set of the conditional attributes listed in attributes.

7.2 Attribute signi�cance

Author: Arkadiusz Wojna

Class path:

rseslib.processing.evaluation.attribute.RoughSetEvaluator

Description:

Rough set thoery provides a measure estimating how signi�cant for the decision
the particular attributes are [19]. The attributes that are not signi�cant can be
removed from the attribute set to reduce the size of the data table.

Signi�cance of an attribute set B ⊆ A is measured by looking at how much the
approximation accuracy γ drops when removing the attributes B from the set
of attributes:

σ(B) = 1− γ(A−B)

γ(A)

The coe�cient σ(B) can be interpreted as an error which occurs when the
attributes B are removed. The value 0 means that after removal of the attributes
B the remaining attributes provide the same information as the original set of
attributes A.

The method attributeSignificance(int[] attributes, DoubleData[] objs)

in the RoughSetEvaluator class calculates the value of the σ coe�cient for the
set of objects objs and the set of the conditional attributes listed in attributes.

36

Chapter 8

Rough sets

The library provides the basic concepts of rough set theory as lower and upper
approximation, and positive region [19].

8.1 Lower and upper approximation

Author: Arkadiusz Wojna

Class path:

rseslib.processing.roughset.RoughSet

Description:

Lower and upper approximation are core concepts in rough set theory based
on the notion of indiscernibility. Let U be a data table and A be the set of
conditional attributes describing U . For a given subset of attributes B ⊆ A two
points x, y ∈ U are B-indiscernible if and only if a(x) = a(y) for all a ∈ B. Let
B(x) be the set of all points B-indiscernible from the point x:

B(x) = {y ∈ U : a(x) = a(y) for each a ∈ B}

The lower approximation B(X) of a set of points X ⊆ U with respect to a given
subset of attributes B ⊆ A is de�ned as the set of all points from X such that
each point B-indiscernible from a point from the lower approximation belongs
to X:

B(X) = {x ∈ X : B(x) ⊆ X}
The upper approximation B(X) of a set of points X ⊆ U with respect to a
given subset of attributes B ⊆ A is de�ned as the set of all points from X that
are B-indiscernible from any point in X:

B(X) = {x ∈ U : B(x) ∩X ̸= ∅}

37

The method lowerApproximation(int[] attributes, double dec, DoubleData[]

objs) in the RoughSet class computes the lower approximation of the decision
class dec in the set of objects objs with respect to the set of the conditional
attributes listed in attributes, and the method upperApproximation(int[]

attributes, double dec, DoubleData[] objs) computes the upper approx-
imation of the decision class dec.

8.2 Positive region

Author: Arkadiusz Wojna

Class path:

rseslib.processing.roughset.RoughSet

Description:

Let dec : U → Vdec be a decision attribute, and for each decision value di ∈ Vdec

let Di be its decision class in the data table U :

Di = {x ∈ U : dec(x) = di}

The positive region P (U) of a data table U with respect to a given subset of
attributes B ⊆ A is de�ned as the sum of lower approximations of the decision
classes in U :

P (U) =
⋃

di∈Vdec

B(Di)

The method positiveRegion(int[] attributes, DoubleData[] objs) in the
RoughSet class computes the positive region of the set of objects objs with re-
spect to the set of the conditional attributes listed in attributes.

38

Chapter 9

Discernibility matrix

Author: Rafaª Latkowski

Class path:

rseslib.processing.discernibility.DiscernibilityMatrixProvider

Description:

The library provides 4 types of discernibility matrix [27] including types han-
dling inconsistencies in data [20, 26]. Let U be a data table used to construct
a discernibility matrix and A be the set of conditional attributes describing U .
Each type is |U |× |U | matrix de�ned for all pairs of objects x, y ∈ U . The �elds
of discernibility matrix M(x, y) are de�ned as the subsets of the set of condi-
tional attributes: M(x, y) ⊆ A. If a data table contains numerical attributes
discernibility matrix can be computed using either the original or the discretized
numerical attributes.

The �rst type of discernibility matrix Mall depends on the values of the condi-
tional attributes only, it does not take the decision attribute into account:

Mall(x, y) = {ai ∈ A : xi ̸= yi}

In many applications, e.g. in object classi�cation, we need to discern objects
only if they have di�erent decisions. The second type of discernibility matrix
Mdec discerns objects from di�erent decision classes:

Mdec(x, y) =

{
{ai ∈ A : xi ̸= yi} if dec(x) ̸= dec(y)

∅ if dec(x) = dec(y)

If data are inconsistent, i.e. if there are one or more pairs of objects with
di�erent decisions and with equal values on all conditional attributes:

∃x, y ∈ U : ∀ai ∈ A : xi = yi ∧ dec(x) ̸= dec(y)

39

then Mdec(x, y) = ∅ like for pairs of objects from the same decision class. To
overcome this inconsistency the concept of generalized decision was introduced
[20, 26]:

∂(x) = {d ∈ Vdec : ∃y ∈ U : ∀ai ∈ A : xi = yi ∧ dec(y) = d}

If U contains inconsistent objects x, y they have the same generalized decision.
The next type of discernibility matrix Mgen is based on generalized decision:

Mgen(x, y) =

{
{ai ∈ A : xi ̸= yi} if ∂(x) ̸= ∂(y)

∅ if ∂(x) = ∂(y)

This type of discerniblity matrix removes inconsistencies but discerns pairs of
objects with the same original decision, e.g. an inconsistent object from a
consistent object. The fourth type of discernibility matrix M both discerns a
pair of objects only if they have both the original and the generalized decision
di�erent:

M both(x, y) =

{
{ai ∈ A : xi ̸= yi} if ∂(x) ̸= ∂(y) ∧ dec(x) ̸= dec(y)

∅ if ∂(x) = ∂(y) ∨ dec(x) = dec(y)

Data can contain missing values. All types of discernibility matrix available in
the library have 3 modes to handle missing values [13, 29]:

� di�erent value � an attribute ai discerns x, y if the value of one of them
on ai is de�ned and the value of the second one is missing (missing value is
treated as yet another value): ai /∈ M(x, y) ⇔ xi = yi ∨ (xi = ∗ ∧ yi = ∗)

� symmetric similarity � an attribute ai does not discern x, y if the value
of any of them on ai is missing: ai /∈ M(x, y) ⇔ xi = yi ∨ xi = ∗ ∨ yi = ∗

� nonsymmetric similarity � asymmetric discerniblity relation between x
and y: ai /∈ M(x, y) ⇔ (xi = yi ∧ yi ̸= ∗) ∨ xi = ∗

The �rst mode treating missing value as yet another value keeps indiscernibility
relation transitive but the next two modes make it intransitive. Such a relation is
not an equivalence relation and does not de�ne correctly indiscernibility classes
in the set U . To eliminate that problem the library provides an option to
transitively close an intransitive indiscernibility relation.

Usage:

To compute a discernibility matrix for a given data table a user needs to
create a DiscernibilityMatrixProvider object passing parameters and the
table to the constructor DiscernibilityMatrixProvider(Properties prop,

40

DoubleDataTable table). Providing null as the parameters makes the algo-
rithm use the default parameter values. Section 5.2 describes how to prepare
non-default parameter values. The object provides two methods.

The method getDiscernibilityMatrix() returns the discernibility matrix for
the data table passed to the constructor. The matrix is represented by an object
of the Collection<BitSet> type. Each BitSet element of the result represents
the set M(x, y) of conditional attributes discerning a certain pair of objects x, y
from the data table. The method get(int i) of a BitSet representing M(x, y)
returns true if the i-th attribute discerns the objects x, y otherwise it returns
false. The attribute indices are de�ned by the header of the data table used
to compute the matrix.

The method getLocalDiscernibility(DoubleData object) returns the row
of the discernibility matrix with the sets of attributes discerning a given data
object from other objects from the data table. The row is represented by an
object of the Collection<BitSet> type by analogy to the whole discernibility
matrix.

Parameters:

� IndiscernibilityForMissing - de�nes how missing values are treated while
discerning objects:

� DiscernFromValue - missing value as di�erent value

� DontDiscernFromValue - symmetric similarity

� DiscernFromValueOneWay - nonsymmetric similarity

� DiscernibilityMethod - de�nes the type of discernibility matrix to be com-
puted:

� OrdinaryAndInconsistenciesOmitted - the discernibility matrix type
Mdec, it discerns objects with di�erent decisions.

� GeneralizedDecision - the discernibility matrix typeMgen, it discerns
objects with di�erent generalized decisions.

� GeneralizedDecisionAndOrdinaryChecked - the discernibility matrix
type M both, it discerns objects having both generalized and original
decisions di�erent.

� All - the discernibility matrix typeMall, it discerns all objects except
for indiscernible pairs.

� GeneralizedDecisionTransitiveClosure (TRUE/FALSE) - is used only if
DiscernibilityMethod is set to GeneralizedDecision or GeneralizedDeci-
sionAndOrdinaryChecked and IndiscernibilityForMissing is set to Dont-
DiscernFromValue or DiscernFromValueOneWay. Setting the option to
TRUE makes the discernibility matrix use the transitive closure of gener-
alized decision.

41

Chapter 10

Reducts

10.1 Reduct types

Reduct [27] is a key concept in rough set theory. It can be used to remove
some data without loss of information or to generate decision rules. Let U be
a data table, A be the set of conditional attributes describing U and M be a
discernibility matrix of any type computed from the data table U .

De�nition 1. The subset of attributes R ⊆ A is a (global) reduct in relation to
a discernibility matrix M if each pair of objects discernible by M is discerned
by at least one attribute from R and no proper subset of R holds that property:

∀x, y ∈ U : M(x, y) ̸= ∅ ⇒ R ∩M(x, y) ̸= ∅

∀R′ ⊊ R ∃x, y ∈ U : M(x, y) ̸= ∅ ∧R′ ∩M(x, y) = ∅

If M is a decision-dependent discernibility matrix the reducts related to M are
the reducts related to the decision attribute.

Reducts de�ned in De�nition 1 called also global reducts are sometimes too
large and generate too speci�c rules. To overcome this problem the notion of
local reducts was introduced [36].

De�nition 2. The subset of attributes R ⊆ A is a local reduct in relation to
a discernibility matrix M and an object x ∈ U if each object y ∈ U discerned
from x by M is discerned from x by at least one attribute from R and no proper
subset of R holds that property:

∀y ∈ U : M(x, y) ̸= ∅ ⇒ R ∩M(x, y) ̸= ∅

∀R′ ⊊ R ∃y ∈ U : M(x, y) ̸= ∅ ∧R′ ∩M(x, y) = ∅

42

It may happen that local reducts are still too large. In the extreme situation
there is only one global or local reduct equal to the whole set of attributes A.
In such situations partial reducts [15, 17] can be helpful.

Let P be the set of all pairs of objects x, y ∈ U discerned by a discernibility
matrix M : P = {{x, y} ⊆ U : M(x, y) ̸= ∅} and let α ∈ (0; 1).

De�nition 3. The subset of attributes R ⊆ A is a global α-reduct in relation
to a discernibility matrix M if it discerns at least (1 − α) |P | pairs of objects
discernible by M and no proper subset of R holds that property:

|{{x, y} ⊆ U : R ∩M(x, y) ̸= ∅}| ≥ (1− α) |P |

∀R′ ⊊ R : |{{x, y} ⊆ U : R′ ∩M(x, y) ̸= ∅}| < (1− α) |P |

Let P (x) be the set of all objects y ∈ U discerned from x ∈ U by a discerniblity
matrix M : P (x) = {y ∈ U : M(x, y) ̸= ∅} and let α ∈ (0; 1).

De�nition 4. The subset of attributes R ⊆ A is a local α-reduct in relation to a
discernibility matrix M and an object x ∈ U if it discerns at least (1−α) |P (x)|
objects discernible from x by M and no proper subset of R holds that property:

|{y ∈ U : R ∩M(x, y) ̸= ∅}| ≥ (1− α) |P (x)|

∀R′ ⊊ R : |{y ∈ U : R′ ∩M(x, y) ̸= ∅}| < (1− α) |P (x)|

10.2 Reduct representation

Each reduct is represented by an object of the java.util.BitSet type. The
method get(int i) of a BitSet representing a reduct returns true if the i-th
attribute belongs to the reduct otherwise it returns false. The attribute indices
are de�ned by the header of the data table (see Section 4.2) used to compute
the reducts.

10.3 Computing reducts

The library provides a number of algorithms computing reducts. These algo-
rithms are the most time-consuming among rough set algorithms, the time cost
of other steps in the overall knowledge discovery process is often negligible when
compared to reduct computations. The performance of the methods computing
reducts implemented in Rseslib measured on benchmark data sets is presented
in [34].

Interfaces and classes for methods computing reducts are provided in the pack-
age rseslib.processing.reducts.

43

There are two basic intefaces for methods computing reducts: the interface
GlobalReductsProvider for methods computing global reducts and the inter-
face LocalReductsProvider for methods computing local reducts. A class com-
puting reducts can implement one of the two interfaces or both.

Each class computing reducts is required to extend the abstract Configuration
class and to provide the constructor with the following two arguments:

public MyReductProvider(Properties params, DoubleDataTable table)

{

super(params);
...

}

The �rst argument params de�nes the parameters of the method. Providing
null as the parameters makes the method use the default parameter values.
Section 5.2 describes how to prepare non-default parameter values. The data
table provided as the second argument is used to compute reducts.

The GlobalReductsProvider interface provides the method getReducts() re-
turning Collection<BitSet> representing computed global reducts as described
in Section 10.2. The LocalReductsProvider interface provides the method
getSingleObjectReducts(DoubleData object) returning Collection<BitSet>
representing local reducts computed for a given data object.

10.3.1 All global reducts

Author: Rafaª Latkowski, Michaª Kurzydªowski

Class path:

rseslib.processing.reducts.AllGlobalReductsProvider

Description:

The algorithm computes all global reducts from a data set. The algorithm is
based on the fact that a set of attributes is a reduct if and only if it is a prime
implicant of a boolean CNF formula generated from the discernibility matrix
[25]. In the �rst phase the algorithm computes the discernibility matrix of
the type speci�ed by its parameters (see Chapter 9). In the second phase it
transforms the discernibility matrix into a boolean CNF formula and applies an
e�cient algorithm �nding all prime implicants of the formula. The algorithm
�nding all prime implicants uses well-known in the �eld of boolean reasoning
advanced techniques accelerating computations [2]. All found prime implicants
are global reducts.

Parameters:

44

� IndiscernibilityForMissing - as in Chapter 9

� DiscernibilityMethod - as in Chapter 9

� GeneralizedDecisionTransitiveClosure - as in Chapter 9

10.3.2 All local reducts

Author: Rafaª Latkowski, Michaª Kurzydªowski

Class path:

rseslib.processing.reducts.AllLocalReductsProvider

Description:

The algorithm computes all local reducts for each object in a data set [34]. Like
the algorithm computing global reducts it uses boolean reasoning. The �rst
step is the same as for global reducts: the discernibility matrix speci�ed by
parameters is calculated. Next for each object x in the data set the row of the
discernibility matrix corresponding to the object x is transformed into a CNF
formula and all local reducts for the object x are computed with the algorithm
�nding prime implicants.

Parameters:

� IndiscernibilityForMissing - as in Chapter 9

� DiscernibilityMethod - as in Chapter 9

� GeneralizedDecisionTransitiveClosure - as in Chapter 9

10.3.3 Johnson's reducts

Author: Wiktor Gromniak

Class path:

rseslib.processing.reducts.JohnsonReductsProvider

Description:

The algorithm computes reducts using Johnson's greedy heuristic [11, 18]. The
computed reducts are global reducts. The algorithm provides two modes.

In the �rst mode the algorithm computes one reduct. Like the algorithm com-
puting all reducts �rst it calculates a discernibility matrix. Next the algorithm
starts with the empty set of attributes as a candidate set for a reduct. At
each step the algorithm considers only the non-empty �elds of the discernibility
matrix that do not contain any of the attributes added to the candidate set
previously. In a single step it adds the attribute that occurs in the maximal

45

number of such �elds. When each non-empty �eld of the discernibility matrix
is covered by at least one attribute from the candidate set the last part of the
algorithm is checking which attributes in the candidate set can be removed.
The �nal candidate set is a reduct. Ties in the steps selecting an attribute are
resolved arbitrarily.

The second mode is the version of Johnson's greedy algorithm in which the
algorithm branches and traverses all possibilities rather than selecting one of
them arbitrarily when more than one attribute cover the maximal number of
uncovered �elds of the discernibility matrix. The result is the set of the reducts
found in all branches of the algorithm.

Parameters:

� IndiscernibilityForMissing - as in Chapter 9

� DiscernibilityMethod - as in Chapter 9

� GeneralizedDecisionTransitiveClosure - as in Chapter 9

� Reducts - mode of the algorithm:

� OneJohnson - computing one arbitrary Johnson's reduct

� AllJohnson - computing all Johnson's reducts

10.3.4 Partial reducts

Authors: Marcin Piliszczuk, Beata Zielosko

Class path:

rseslib.processing.reducts.PartialReductsProvider

Description:

The class provides two greedy algorithms computing partial reducts described in
[15]. The method getReducts() returns one global α-reduct (see De�nition 3 in
Section 10.1) for a given data table. The method getSingleObjectReducts(DoubleData
object) returns one local α-reduct (see De�nition 4 in Section 10.1) for given
data object and data table.

Parameters:

� AlphaForPartialReducts (0.0− 1.0) - α value in α-cover of partial reducts

46

Chapter 11

Rules

11.1 Rules representation

Classes for rules are de�ned in the package rseslib.structure.rule.

11.1.1 Rule types

There are four interfaces de�ning di�erent types of rules:

� Rule - the basic interface for rules with deterministic decision returned by
the getDecision()method, the interface has the method matches(DoubleData
dObj) of boolean result type determining whether a data object matches
a rule or not

� RuleWithStatistics - an interface extending the Rule interface for the
rules with information about accuracy (the getAccuracy() method) and
support (the getSupport() method)

� DistributedDecisionRule - an interface for the rules with non-deterministic
decision using decision probabilities (the getDecisionVector() method)
rather than pointing to a single decision

� PartialMatchingRule - an interface for the rules tha can be matched par-
tially by data objects, the method matchesPartial(DoubleData dObj)

returns the level of matching from the range [0; 1].

Each class representing rules provides text representation by implementing the
standard toString() method.

47

11.1.2 Universal boolean function based rules

The BooleanFunctionRule class enables to de�ne rules that can match data
objects with any kind of boolean function. It provides the constructor
BooleanFunctionRule(BooleanFunction premise, double decision,

NominalAttribute decAttr). The premise argument is any boolean function
de�ning whether data objects match a rule or not, decision is the decision of
the rule and decAttr is the structure describing the decision attribute.

The BooleanFunction interface is de�ned in the package
rseslib.structure.function.booleanval. The package includes implemen-
tation of the most popular boolean functions and operators used for rule con-
struction:

� AttributeEquality - de�nes a single descriptor that requires a particular
value on a given attribute

� AttributeInterval - de�nes a single descriptor that requires the value
of a numerical attribute to fall into a given interval

� AttributeValueSubset - de�nes a single descriptor that requires the value
of a symbolic attribute to be in a given subset of attribute values

� Conjuction, Disjunction - make conjuction and disjunction of two or
more boolean functions

� Negation - negates a given boolean function

To construct rules a user can use these boolean functions and operators and/or
implement their own functions. Below there is an example of construction of a
typical rule with equality descriptors:

DoubleDataWithDecision obj;
...

BooleanFunction[] descr = new descriptors[3];

descr[0] = new AttributeEquality(1, obj.get(1));

descr[1] = new AttributeEquality(4, obj.get(4));

descr[2] = new AttributeEquality(7, obj.get(7));

Rule r = new BooleanFunctionRule(new Conjunction(descr),

obj.getDecision());

11.1.3 Optimized rules with equality descriptors

For the sake of performance and low memory footprint the rules with equality de-
scriptors only have the optimized implementation by the class EqualityDescriptorsRule.
The class provides the constructor EqualityDescriptorsRule(BitSet descriptors,

48

DoubleData object) taking the bit mask of the attributes having the descrip-
tors in the constructed rule and the data object de�nining the values of the
selected attributes in the descriptors of the rule.

The EqualityDescriptorsRule class implements all four types of rules de-
scribed in Section 11.1.1.

11.2 Generating rules

Interfaces and classes for methods generating rules are provided in the package
rseslib.processing.rules.

The interface RuleGenerator is used to de�ne algorithms generating rules.
Rules are generated from a data table with the method generate(DoubleDataTable
tab, Progress prog) returning a collection of generated rules.

If a method generating rules has parameters it provides one-argument construc-
tor with parameter values as the argument (see Section 5.2).

11.2.1 Generating rules from reducts

Author: Rafaª Latkowski

Class path:

rseslib.processing.rules.ReductRuleGenerator

Description:

The algorithm generating rules from reducts [34] is based on the methods com-
puting reducts (see Chapter 10). It di�ers a little depending on whether the
reducts used to generate the rules are global or local.

While using global reducts �rst the algorithm computes the global reducts ac-
cording to parameters. Let U be a data table used to generate reducts and rules
and GR be the set of global reducts computed from U . In the next phase the
algorithm �nds all templates in the data table:

Templates(GR) =

{ ∧
ai∈R

ai = xi : R ∈ GR, x ∈ U

}
Then, for each template the algorithm generates one rule with a non-deterministic
decision:

Rules(GR) = {t ⇒ (p1, . . . , pm) : t ∈ Templates(GR)}

where the decision probabilities pj in each rule t ⇒ (p1, . . . , pm) are de�ned as:

pj =
|{x ∈ U : x matches t ∧ dec(x) = dj}|

|{x ∈ U : x matches t}|

49

In case of local reducts let LR : U 7→ P(A) be the algorithm computing the
local reducts LR(x) for each data object x ∈ U according to parameters. First,
the algorithm LR is applied to each object x ∈ U to generate local reducts.
Next, the set of templates is computed as union of the sets of templates from
all objects in U :

Templates(LR) =

{ ∧
ai∈R

ai = xi : R ∈ LR(x), x ∈ U

}

The set of decision rules is obtained from the set of templates in the same way
as in case of global reducts:

Rules(LR) = {t ⇒ (p1, . . . , pm) : t ∈ Templates(LR)}

where pj is de�ned like in the rules generated from global reducts.

The algorithm provides the option to allow the values in the descriptors of a
rule to be missing values: ai = ∗. An object x satis�es a descriptor with missing
value ai = ∗ if the value of the attribute ai on x is missing.

The type of rules generated from reducts is always EqualityDescriptorsRule.
As the interface method returns a collection of objects of the basic Rule type,
to obtain accuracy and support of the generated rules the rules need to be cast
to the RuleWithStatistics type and to obtain the probabilities of decisions
the rules need to be cast to the DistributedDecisionRule type.

Warning! When using global reducts the algorithm does not report progress
until global reducts are computed. It reports progress only while generating
rules from the computed global reducts. For the case with all global reducts the
computation time can be estimated by running �rst the algorithm computing
rules from all local reducts which reports progress steadily. Computation time
of all global reducts is comparable (usually a bit shorter) to computation time
of all local reducts.

Parameters:

� Reducts - method generating reducts from discernibility matrix:

� AllLocal - generating all local reducts (see Section 10.3.2)

� AllGlobal - generating all global reducts (see Section 10.3.1)

� OneJohnson - generating one reduct by greedy Johnson's algorithm
(see Section 10.3.3)

� AllJohnson - generating all reducts that may be obtained from John-
son's algorithm (see Section 10.3.3)

� PartialLocal - generating local partial reducts (see Section 10.3.4)

� PartialGlobal - generating global partial reducts (see Section 10.3.4)

50

� IndiscernibilityForMissing - as in Chapter 9

� DiscernibilityMethod - as in Chapter 9

� GeneralizedDecisionTransitiveClosure - as in Chapter 9

� AlphaForPartialReducts - as in Section 10.3.4

� MissingValueDescriptorsInRules (TRUE/FALSE) - allows or not descrip-
tors with missing values in the conditional part of rules

11.2.2 AQ15 algorithm

Author: Cezary Tkaczyk

Class path:

rseslib.processing.rules.CoveringRuleGenerator

Description:

Implementation of the covering algorithm AQ15 generating rules described in
[14]. The type of the rules generated by this algorithm is BooleanFunctionRule.

Parameters:

� coverage - value from [0; 1] de�nes the minimal part of the data set, which
has to be covered by rules

� searchWidth - the width of rules space search while searching next (best)
rule (limit of available rules set in one step; during rules generation it
controls whether quality or speed is more important for a user)

� margin - value from [0; 1] used to de�ne interval descriptors for numeric
attributes; it describes safety level for intervals de�ned in such descriptors

11.2.3 Exemplary rule generator

Author: Arkadiusz Wojna

Class path:

rseslib.processing.rules.AccurateRuleGenerator

Description:

A simple exemplary implementation of rule generation. For a given data table
it generates the set of maximally speci�c rules containing equality descriptors
for all conditional attributes, one rule for each data object. The generated rules
are of the BooleanFunctionRule type.

Parameters:

� maxNumberOfRules - exemplary parameter, the limit on the number of
generated rules

51

Chapter 12

Classi�cation and
experiments

Interfaces and classes for classi�ers and experiments with classi�ers are provided
in the package rseslib.processing.classification.

12.1 Classi�ers

There are two basic intefaces for classi�ers: the Classifier interface for classi-
�ers with deterministic decision and the ClassifierWithDistributedDecision
interface for classi�ers providing decision probabilities. A typical classi�er im-
plements one of these two interfaces and extends the abstract
ConfigurationWithStatistics class:

public MyClassifier extends ConfigurationWithStatistics

implements Classifier {
...

}

Each classi�er is required to provide the constructor with the following three
arguments:

public MyClassifier(Properties params,

DoubleDataTable trainTable, Progress prog)

{

super(params);
...

}

52

The constructor is assumed to train the classi�er with a given training table and
a given set of parameters. Providing null as the parameters makes the classi�er
use the default parameter values. Section 5.2 describes how to prepare non-
default parameter values. This constructor is mandatory to make the classi�er
usable in the methods implementing experiments and in the graphical interface.
The constructed classi�er is ready for classi�cation.

Classi�er implementation may provide other constructors, e.g. with partially
precomputed components (see 5.1).

A classi�er needs to implement also a classi�cation method. The Classifier

interface de�nes the method classify(DoubleData) returning a decision as-
signed to a classi�ed data object. In case of data with symbolic decision the
result is assumed to be the global code of the assigned decision value (see Sec-
tion 4.3). The ClassifierWithDistributedDecision interface is dedicated to
data with symbolic decision only. It de�nes the method
classifyWithDistributedDecision(DoubleData) returning a decision distri-
bution assigned to a classi�ed data object. The result is an array, the value at
the i-th position of the array de�nes the probability of the decision value whose
local code is equal to i (see Section 4.3).

Warning! While implementing a classi�cation method a classi�er is expected
to handle correctly the values of conditional symbolic attributes not occuring
in a training set. In particular, the object representing a symbolic attribute in
the training set may not have any local code representing such a value.

To provide statistics from learning or classi�cation a classi�er needs to im-
plement the calculateStatistics() and resetStatistics() methods (see
Section 5.5).

To enable saving and reloading a classi�er needs to implement the
java.io.Serializable interface (see Section 5.6).

The types of classi�ers implemented in Rseslib are described in Chapter 13.

12.2 Rule-based classi�ers

Rule-based classi�ers are provided in the package
rseslib.processing.classification.rules. All the general principles of
classi�er implementation described in the previous section apply also to rule-
based classi�ers.

A typical rule-based classi�er uses an existing or newly implemented generator
of rules in the training phase (see Section 11.2), e.g.:

public MyRuleClassifier extends ConfigurationWithStatistics

implements Classifier {

53

Collection<Rule> m_Rules;

public MyRuleClassifier(Properties params,

DoubleDataTable trainTable, Progress prog) {

super(params);

RuleGenerator gen;
...

m_Rules = gen.generate(trainTable);

}
...

}

Then the generated rules are used in a classi�cation method to determine a
decision of a data object to be classi�ed. The generate() method returns the
objects representing rules of the most general Rule type. To use more speci�c
attributes of generated rules the classi�cation method needs to cast the rules
to a required subtype given the rules implement the subtype, e.g. to use rule
support the rules need to be cast to the RuleWithStatistics type.

Rseslib provides the following classi�ers based on rules: RoughSetRules (Section
13.1), AQ15 (Section 13.6) and the simple
MajorityClassifierWithRules to be used as a training example.

12.3 Porting Rseslib-based classi�ers to Weka

To enable an Rseslib-based classi�er in Weka the author does not need to im-
plement translation of data and classi�cation results between Rseslib and Weka.
Such translation is implemented in Rseslib in a universal way so that the author
of any Rseslib-based classi�er can use the implemented translation to provide
its port to Weka.

To provide the Weka port the author needs to de�ne a separate class extend-
ing the abstract class AbstractRseslibClassifierWrapper from the package
weka.classifiers. The porting class needs to implement the constructor pass-
ing the class of the underlying Rseslib classi�er to the abstract wrapper and the
single-line main() method, e.g.:

public MyWekaClassifier extends AbstractRseslibClassifierWrapper {

public MyWekaClassifier() {

super(MyRseslibClassifier.class);

}
...

54

public static void main(String[] args) throws Exception {

runClassifier(new MyWekaClassifier(), args);

}

}

The class implementing the port must be placed in the appropriate subpackage
of the weka.classifiers.* package to make it accessible within Weka tools.

If a classi�er to be ported provides con�guration parameters the class imple-
menting porting must implement the con�guration-related methods required by
Weka tools (see Section Writing a new Classi�er in WEKA Manual provided
within each Weka installation).

It is good to provide also a short description of a classi�er displayed by Weka
tools by implementing the globalInfo() method.

The classes weka.classifiers.rules.RoughSet or
weka.classifiers.lazy.RseslibKNN are the examples of Weka ports of Rseslib-
based classi�ers.

12.4 Visualization

Classi�ers can implement graphical presentation. Such classi�ers can be dis-
played using QMAK program (see Chapter 15).

The VisualClassifier interface extending the Classifier interface is used
for classi�ers implementing visualization. It requires two additional methods
to be implemented. The method draw(JPanel canvas) draws the classi�er on
a graphical panel. The method drawClassify(JPanel canvas, DoubleData

obj) presents classi�cation of a single data object.

To make the non-visual part of visualized classi�ers clear and simple visualiza-
tion is usually implemented by a subclass of the class implementing the non-
visual version of a classi�er. For example, the class RoughSetRules provides
the non-visual version of rough set based classi�er and the class
RoughSetRulesVisual is its extension implementing visualization.

12.5 Single classi�er test and classi�cation results

To run a simple experiment testing a trained classi�er against a data table the
class SingleClassifierTest can be used. The method classify(Classifier

cl, DoubleDataTable testTable, Progress prog) returns a TestResult ob-
ject containing the classi�cation results. The method getNoOfObject(double

trueDec, double assignedDec) of a TestResult object provides the con-
fusion matrix: for a given decision class trueDec it returns the number of

55

the tested objects classi�ed as assignedDec. The method getAccuracy()

returns overall classi�cation accuracy for the whole test table. The method
getDecAccuracy(double dec) returns the classi�cation accuracy in a given
decision class. Accuracy is the ratio of correctly classi�ed objects to all objects.
If the decision attribute has two decision classes the method getGmean() re-
turns G-mean classi�cation measure, and the methods getFmeasure(),

getSensitivity(), getSpecificity() and getPrecision() return F-measure,
sensitivity (recall, true positive rate), speci�city (true negative rate) and preci-
sion (positive predictive value) calculated for the minority decision class. The
method toString() prints overall accuracy, accuracy in each decision class and
statistics calculated by a classi�er during classi�cation. In case of data with
two decision classes it prints also the values of G-mean measure, F-measure and
sensitivity.

12.6 Training and testing many classi�ers

The class ClassifierSet facilitates testing many classi�ers against the same
pair of the train and the test tables.

First, a user needs to de�ne the set of tested classi�ers by calling the
addClassifier(String name, Class classifierType, Properties params)

method for each instance of a classi�er to be tested. The argument name is an
arbitrary name provided by a user to identify the classi�er results, the argu-
ment params de�nes the parameters of the classi�er (see Section 5.2). The two-
argument method addClassifier(String name, Class classifierType) can
be used to add classi�ers with default parameter values. More than one instance
of same classi�er type may be added to the set, e.g. with di�erent parameter
values.

After de�ning the set of classi�ers to be tested a user trains the classi�ers
with the method train(DoubleDataTable, Progress). At last, they test the
trained classi�ers with the method classify(DoubleDataTable, Progress).
The following code illustrates an exemplary test of 2 classi�ers:

DoubleDataTable trainTable, testTable;
...

ClassifierSet mySet = new ClassifierSet();

mySet.addClassifier(�Default Decision Tree�, C45DecisionTree.class, null);

mySet.addClassifier(�Default KNN�, KNearestNeighbors.class, null);

mySet.train(trainTable, new StdOutProgress());

Map<String,TestResults> results =

mySet.classify(testTable, new StdOutProgress());

The classi�cation result is the mapping between the names of the tested clas-
si�ers (passed as the arguments to the addClassifier(...) method) and the

56

classi�cation results represented by TestResult objects (see Section 12.5). The
mapping can be displayed using the method of the Report class as below given
at least one output channel is added for information messages (see Chapter 3),
e.g.:

Report.displayMapWithMultiLines(�Classification results�, results)

Both train(...) and classify(...) methods can be used many times on
th same ClassifierSet instance. When the train(...) method is run again,
the classi�ers are retrained with a new training table.

The train(...) method uses the 3-argument constructor described in Sec-
tion 12.1 to train classi�ers. A user may add a classi�er trained with an-
other constructor with the use of the method addClassifier(String name,

Classifier cl). The classi�ers added with this method are skipped in the
train(...) method. They are used only in the classify(...) method to
provide classi�cation results.

12.7 Crossvalidation and multiple tests

The library provides also tools for more complex tests: cross-validation (the
class CrossValidationTest), multiple test with random partition of a test table
(the class MultipleRandomSplitTest) and multiple cross-validation (the class
MultipleCrossValidationTest). A typical usage scheme for all these classes
is similar: �rst an object representing a selected test type is constructed given
a set of classi�ers to be tested (see Section 12.6), then the test method is run,
e.g.:

DoubleDataTable testTab;

ClassifierSet mySet;
...

Properties cvParams;

cvParams.setProperty(�noOfFolds�, �10�);

CrossValidationTest cvt = new CrossValidationTest(cvParams, mySet);

Map<String,MultipleTestResult> results =

cvt.test(testTab, new StdOutProgress());

The two other multiple test types are run in the same way. The result returned
by the test methods is the mapping between classi�er names de�ned in the
ClassifierSet object and their classi�cation results. The classi�cation result
for a single classi�er is represented by an object of the MultipleTestResult

class. A MultipleTestResult object provides the average accuracy from all test

57

runs (the getAvgAccuracy() method) and the standard deviation of accuracy
(the getAccuracyStandardDeviation() method). In case of data with two
decision classes it provides also G-mean measure (the getAvgGmean() method),
and F-measure (the getAvgFmeasure() method) and sensitivity
(the getAvgSensitivity() method) calculated for the minority class. The
measures can be obtained also in a text form using the toString() method.
The results for all test classi�ers can be displayed using the method of the
Report class as below given at least one output channel is added for information
messages (see Chapter 3), e.g.:

Report.displayMapWithMultiLines(�Test results�, results)

The parameters of all tests are provided using the con�guration mechanism de-
scribed in Section 5.2. The CrossValidationTest class has the one parameter
noOfFolds de�ning the number of cross-validation folds.
The MultipleCrossValidationTest class has the two parameters: noOfFolds
and noOfTests de�ning the number of cross-validation tests to be run. The
MultipleRandomSplitTest class has three parameters: noOfTests and the pair
of parameters noOfPartsForTraining and noOfPartsForTesting de�ning the
ratio with which an input table is split randomly into the training and the test
table in each test.

58

Chapter 13

Classi�er types

13.1 Rough set based rule classi�er

Authors: Rafaª Latkowski, Krzysztof Niemkiewicz

Rseslib class path:

rseslib.processing.classification.rules.roughset.RoughSetRules

Weka class path:

weka.classifiers.rules.RoughSet

Description:

59

Rough set classi�er [34] uses the algorithms computing discernibility matrix,
reducts and rules generated from reducts described in the previous chapters.
It enables to apply any of the discretization methods described in Section 6.2
to transform numerical attributes into nominal attributes. Using discernibil-
ity matrix described in Chapter 9 the classi�er provides modes to work with
incomplete data (with missing values) and with inconsistent data. A user of
the classi�er selects a discretization method, a type of discernibility matrix and
an algorithm generating reducts. The classi�er computes a set of decision rules
with non-deterministic decision (see Section 11.2.1) and the support of each rule
in the training set.

Let U be a training set and Rules be the computed set of decision rules. The
rules are used in classi�cation to determine a decision value when provided with
an object x to be classi�ed. First, the classi�er calculates the vote of each
decision class dj ∈ Vdec for the object x:

votej(x) =
∑

{t⇒(p1,...,pm)∈Rules: xmatches t}

|{y ∈ U : y matches t ∧ dec(y) = dj}|

Then the classi�er assigns to the object x the decision with the greatest vote:

decroughset(x) = max
dj∈Vdec

votej(x)

The classi�er provides the method getRules() returning the set of gener-
ated rules used for classi�cation. The type of rules used in the classi�er is
EqualityDescriptorsRule (see Section 11.1.3). As the getRules() method
returns a collection of objects of the basic Rule type, to obtain accuracy and sup-
port of the generated rules the rules need to be cast to the RuleWithStatistics
type and to obtain the probabilities of decisions the rules need to be cast to the
DistributedDecisionRule type.

The classi�er is available in Weka after installing Rseslib package (see Chapter
14). One-letter options of the classi�er displayed in Weka reports are explained
after running (on Linux use colon, on Windows use semicolon to separate jar
paths):

java -cp [path-to-weka.jar]:[path-to-rseslib.jar]

weka.classifiers.rules.RoughSet -h

The classi�er can be visualized using QMAK program (see Chapter 15). Visual-
ization of the classi�er presents all the generated decison rules with their length,
support and accuracy. The rules can be �ltered and sorted by decisions, con-
ditional attribute occurrence, conditional attribute values, rule length, support
and accuracy.

Visualization of classi�cation presents the decision rules matching the classi-
�ed object enabling the same �ltering and sorting criteria as visualization of

60

the classi�er and provides information on the distribution of votes among the
decision values.

Rough set classi�er can be stored in a �le (see Section 5.6).

Parameters:

� Discretization - discretization method applied to numerical attributes:

� None - the classi�er does not use discretization

� EqualWidth - equal width intervals described in Section 6.2.1

� EqualFrequency - equal frequency intervals described in Section 6.2.2

� OneRule - Holte's 1R algorithm described in Section 6.2.3

� EntropyMinimizationStatic - static entropy minimization described
in Section 6.2.4

� EntropyMinimizationDynamic - dynamic entropy minimization de-
scribed in Section 6.2.5

� ChiMerge - ChiMerge algorithm described in Section 6.2.6

� MaximalDiscernibilityHeuristicGlobal - global maximal discernibility
(MD) heuristic described in Section 6.2.7

� MaximalDiscernibilityHeuristicLocal - local maximal discernibility (MD)
heuristic described in Section 6.2.8

� DiscrNumberOfIntervals - used only if Discretization is set to EqualWidth
or EqualFrequency, see Sections 6.2.1 and 6.2.2

� DiscrMinimalFrequency - used only if Discretization is set to OneRule,
see Section 6.2.3

� DiscrCon�denceLevelForIntervalDi�erence (0.0 − 1.0) - used only if Dis-
cretization is set to ChiMerge, see Section 6.2.6

� DiscrMinimalNumberOfIntervals - used only if Discretization is set to
ChiMerge, see Section 6.2.6

� Reducts - as in Section 11.2.1

� IndiscernibilityForMissing - as in Chapter 9

� DiscernibilityMethod - as in Chapter 9

� GeneralizedDecisionTransitiveClosure - as in Chapter 9

� AlphaForPartialReducts - as in Section 10.3.4

� MissingValueDescriptorsInRules (TRUE/FALSE) - as in Section 11.2.1

61

13.2 K nearest neighbours / RIONA

Authors: Arkadiusz Wojna, Grzegorz Góra, �ukasz Kosson

Rseslib class path:

rseslib.processing.classification.parameterised.knn.KNearestNeighbors

Weka class path:

weka.classifiers.lazy.RseslibKNN

Description:

K nearest neighbours classi�er providing various distance measures working
also for data with both numerical and nominal attributes [32]. The classi�er
provides also a number of methods adjusting attribute weights in the distance
measures, an algorithm based on leave-one-out test �nding automatically the
optimal number of nearest neighbours and various methods of voting by nearest
neighbours. Detailed description of the classi�er and all its algorithms and
the experimental comparison of the distance measures, the attribute weighting
algorithms and the voting methods can be found in [32]. The classi�er has also
the mode to work as RIONA algorithm [6, 8].

The classi�er implements fast nearest neighbour search using a metric tree with
two search pruning criteria [31, 32]. The implemented search method makes the
classi�er work for very large data sets.

62

The classi�er is available in Weka after installing Rseslib package (see Chapter
14). One-letter options of the classi�er displayed in Weka reports are explained
after running (on Linux use colon, on Windows use semicolon to separate jar
paths):

java -cp [path-to-weka.jar]:[path-to-rseslib.jar]

weka.classifiers.lazy.RseslibKNN -h

The classi�er can be visualized using QMAK program (see Chapter 15). Visual-
ization of k-NN classi�er projects all training objects onto the two-dimensional
area of the window, marking the objects of each decision class with a di�erent
color. The process of searching for placement of the objects that most faithfully
re�ects the true distances between them in the induced metric, is displayed live,
and can be stopped at any time. A user can select one object and hover the
cursor over another one to display the attribute values of both objects and the
true distance between them.

Visualization of classi�cation by k-NN classi�er projects only the classi�ed ob-
ject and its k nearest neighbours onto the window area, also searching for place-
ment most faithfully re�ecting the true distances between them. The classi�ed
object is marked by a cross. As in the model visualization, the neighbours from
di�erent decision classes have di�erent colors. On the left panel, beside the
attribute values and the true distances between objects a user also gets infor-
mation about the voting weight after selecting or hovering over a neighbour.
Visualization of classi�cation provides also information on the voting method
and the distribution of votes among the decision values.

The visualized algorithm searching for the best placement of objects in the two-
dimensional area of the QMAK window that combines simulation of spring-line
attraction and repulsion with simulated annealing, is described in [33].

The classi�er can be stored in a �le (see Section 5.6).

Parameters:

� metric - type of metric used for measuring distance between data objects.
The distance between pair of objects is calculated as weighted sum of
distances over all attributes:

� CityAndHamming - combination of city-block Manhattan metric (ab-
solute di�erence between values) for numerical attributes and Ham-
ming metric (1 if values are di�erent, 0 if values are equal) for sym-
bolic attributes

� CityAndSimpleValueDi�erence - combination of city-block Manhat-
tan metric for numerical attributes with Value Di�erence Metric
(VDM) for symbolic attributes. Value Di�erence Metric considers
two symbolic values to be similar if they correlate similarly with the
decision in a training set.

63

� InterpolatedValueDi�erence - combination of Value Di�erence Met-
ric for symbolic attributes with its version for numerical attributes.
The numeric version of this metric is based on dividing the range
of values into intervals, counting the decision distributions in the in-
tervals from the training set and approximating decision distribution
for each numeric value using linear interpolation between the two
intervals nearest to a given value.

� DensityBasedValueDi�erence - combination of Value Di�erence Met-
ric for symbolic attributes with its adaptation to numerical attributes
that takes into account density of attribute values. Decision distribu-
tion for each numerical value is computed in some neighbourhood of
this value. The neighbourhood of a value of a numerical attribute is
de�ned as the set of �xed cardinality containing the training objects
with the nearest values on this attribute.

� vicinitySizeForDensityBasedMetric - used only if metric = DensityBased-
ValueDi�erence. It de�nes the number of training objects that belong
to the neighbourhood of a given numerical value and determine decision
distribution for this value.

� weightingMethod - the method of scaling distances for attributes:

� DistanceBased - iterative correction of attribute weights minimizing
distances of nearest neighbors that classify correctly in a training set

� AccuracyBased - iterative correction of attribute weights optimizing
leave-one-out classi�cation accuracy in a training set

� Perceptron - optimization of attribute weights by perceptron training

� None - using a metric without attribute weights

� indexing (TRUE/FALSE) - if TRUE the classi�er uses indexing of training
objects to accelerate classi�cation and optimization of k

� learnOptimalK (TRUE/FALSE) - if TRUE the classi�er searches for the
best value of k value by optimizing the leave-one-out classi�cation accu-
racy in a training set; if FALSE the classi�er uses the value of k set by a
user

� maxK - used only if learnOptimalK = TRUE, de�nes the range in which
the classi�er searches for the best k

� k - number of nearest neighbours which take part in selection of decision
for a classi�ed object; it can be optimized automatically or set by a user

� �lterNeighboursUsingRules (TRUE/FALSE) - switch to RIONA which ex-
cludes from voting the nearest neighbours not con�rmed by additionally
generated rules [6, 8]

64

� voting - the method of voting for decisions by nearest neighbours:

� Equal - the votes of all nearest neighbours are equally important

� InverseDistance - the votes of nearest neighbours are inversely pro-
portional to their distances from a classi�ed object

� InverseSquareDistance - the votes of nearest neighbours are inversely
proportional to square of their distances from a classi�ed object

13.3 K nearest neighbours with local metric in-
duction

Author: Arkadiusz Wojna

Rseslib class path:

rseslib.processing.classification.parameterised.knn.LocalKNearestNeighbors

Weka class path:

weka.classifiers.lazy.LocalKNN

Description:

This is k nearest neighbours method extended with an extra step - the classi�er
calculates a local metric for each classi�ed object [28]. While classifying a test
object, �rst the classi�er �nds a large set of the nearest neighbours (according
to global metric). Then it generates a new, local metric from this large set of
neighbours. At last, the k nearest neighbours are selected from this larger set
of neighbours according to the locally induced metric.

In comparison to standard k-nn algorithm this method improves classi�cation
accurracy particularly for the case of data with nominal attributes [28]. It
is reasonable to use this method rather for large data sets (2000+ training
instances).

The classi�er is available in Weka after installing Rseslib package (see Chapter
14). One-letter options of the classi�er displayed in Weka reports are explained
after running (on Linux use colon, on Windows use semicolon to separate jar
paths):

The classi�er can be stored in a �le (see Section 5.6).

java -cp [path-to-weka.jar]:[path-to-rseslib.jar]

weka.classifiers.lazy.LocalKNN -h

Parameters:

� metric - as in Section 13.2

65

� vicinitySizeForDensityBasedMetric - as in Section 13.2

� weightingMethod - as in Section 13.2

� learnOptimalK - as in Section 13.2

� localSetSize - size of nearest neighbours set used for induction of local
metric

� k - as in Section 13.2

� voting - as in Section 13.2

13.4 RIONIDA

Author: Grzegorz Góra

Rseslib class path:

rseslib.processing.classification.parameterised.knn.rionida.RIONIDA

Weka class path:

weka.classifiers.lazy.RIONIDA

Description:

RIONIDA [7] is an extension of RIONA classi�er (see Section 13.2) dedicated to
imbalanced data, working only for data with two decision classes. By analogy to
RIONA it combines instance-based learning with rule induction but it contains
substantial modi�cations and extensions aimed at achieving high classi�cation
quality in case of imbalanced data. Detailed description of the classi�er and all
its algorithms and the experimental results can be found in [6].

The classi�er adds new parameters that enable to treat the minority decision
in a special way and to specify to what extent the minority decision is more
important than the majority decision. RIONIDA provides also more �exible
mechanism than RIONA for inclusion of rules into decision selection: new pa-
rameters control the impact of rules on this process. Di�erent parametrisations
correspond to di�erent approaches, including a pure instance-based approach,
a pure rule-based approach, and combination of both.

In the learning phase RIONIDA searches the space of values of three (optionaly
four) parameters and selects the optimal combination of values. A user can
select a measure to be maximized more relevant for imbalanced data like F-
measure and G-mean.

The classi�er is available in Weka after installing Rseslib package (see Chapter
14). One-letter options of the classi�er displayed in Weka reports are explained
after running (on Linux use colon, on Windows use semicolon to separate jar
paths):

66

java -cp [path-to-weka.jar]:[path-to-rseslib.jar]

weka.classifiers.lazy.RIONIDA -h

The classi�er can be stored in a �le (see Section 5.6).

Parameters:

� useMajorityDecAsMinorityDec (TRUE/FALSE) - switch indicating whether
the classi�er treats the majority decision as the minority decision

� metric - as in Section 13.2

� vicinitySizeForDensityBasedMetric - as in Section 13.2

� weightingMethod - as in Section 13.2

� indexing (TRUE/FALSE) - if TRUE the classi�er uses indexing of training
objects to accelerate classi�cation and optimization of parameters

� learnOptimalParameters (TRUE/FALSE) - if TRUE the classi�er searches
for the best combination of parameters using the leave-one-out classi�ca-
tion in a training set; if FALSE the classi�er uses the values of parameters
set by a user

� optimisation4D - if FALSE the classi�er optimizes the parameters k, pThresh-
old and sMinority ; if TRUE the classi�er optimizes also sMajority

� k - number of nearest neighbours which take part in selection of decision
for a classi�ed object; it can be optimized automatically or set by a user

� maxK - used only if learnOptimalParameters = TRUE, the maximal pos-
sible k while learning the optimal value

� pThreshold - if weight of minority decision divided by sum of weights is
greater than or equal to this threshold then a test object is class�ed with
minority decision, otherwise it is classi�ed with majority decision; it can
be optimized automatically or set by a user (this threshold is called pValue
in the source code of RIONIDA)

� pThresholdMin - the minimal possible value while learning the optimal
pThreshold (used only if learnOptimalParameters = TRUE)

� pThresholdMax - the maximal possible value while learning the optimal
pThreshold (used only if learnOptimalParameters = TRUE)

� pThresholdStep - the density of values between pThresholdMin and pThresh-
oldMax while learning the optimal pThreshold (used only if learnOptimal-
Parameters = TRUE)

� sMinority - consistency level for minority decision; it can be optimized
automatically or set by a user (the parameter is called sMinorityValue in
the source code of RIONIDA)

67

� sMinorityMin - the minimal possible value while learning the optimal
sMinority value (used only if learnOptimalParameters = TRUE)

� sMinorityMax - the maximal possible value while learning the optimal
sMinority value (used only if learnOptimalParameters = TRUE)

� sMinorityStep - the density of values between sMinorityMin and sMinor-
ityMax while learning the optimal sMinority value (used only if learnOp-
timalParameters = TRUE)

� sMajority - consistency level for majority decision; it can be optimized
automatically or set by a user (the parameter is called sMajorityValue in
the source code of RIONIDA)

� sMajorityMin - the minimal possible value while learning the optimal sMa-
jority value (used only if learnOptimalParameters = TRUE and optimi-
sation4D = TRUE)

� sMajorityMax - the maximal possible value while learning the optimal
sMajority value (used only if learnOptimalParameters = TRUE and op-
timisation4D = TRUE)

� sMajorityStep - the density of values between sMajorityMin and sMajor-
ityMax while learning the optimal sMajor ity value (used only if learnOp-
timalParameters = TRUE and optimisation4D = TRUE)

� optimisationMeasure - the measure used for optimization of the parame-
ters:

� Gmean - G-mean classi�cation measure

� Fmeasure - F-measure for minority decision

� Accuracy - classi�cation accuracy

� �lterNeighboursUsingRules (TRUE/FALSE) - switch indicating whether
rules are included in the process of decision selection

� voting - as in Section 13.2

68

13.5 Decision tree C4.5

Authors: Arkadiusz Wojna, Maciej Próchniak

Rseslib class path:

rseslib.processing.classification.tree.c45.C45DecisionTree

Description:

The implementation of C4.5 decision tree originally developed by Quinlan[21].

The classi�er enables tree pruning after construction. That can be done auto-
matically by the training algorithm or manually by a user. Use of the algorithmic
pruning is de�ned by a parameter of the classi�er. Manual pruning can be done
by a user while visualizing a tree.

The tree can be visualized using QMAK program (see Chapter 15). Visualiza-
tion of the classi�er presents the structure of the tree. After selection of a node
the decision distribution of the training objects entering that node is displayed,
and the branching condition for an internal node or the assigned decision for a
leaf node. A user can cut o� the subtree of any internal node and convert it to
a leaf (tree pruning).

Visualization of single object classi�cation presents a decision tree with the path
from the root to the leaf node highlighted in green corresponding to a classi�ed
object.

The classi�er can be stored in a �le (see Section 5.6).

Parameters:

� pruning (TRUE/FALSE) - if TRUE the algorithmic tree pruning is applied
after construction of a tree

69

� noOfPartsForBuilding and noOfPartsForPruning - ratio used to split a
training set into the part used for tree construction and the part used for
pruning (used only if pruning is TRUE).

13.6 Rule classi�er AQ15

Author: Cezary Tkaczyk

Rseslib class path:

rseslib.processing.classification.rules.AQ15

Weka class path:

weka.classifiers.rules.AQ15

Description:

Implementation of the AQ15 classi�cation algorithm described in [14]. The
classi�er uses a set of rules generated by a covering algorithm to classify data
objects.

The classi�er is available in Weka after installing Rseslib package (see Chapter
14). One-letter options of the classi�er displayed in Weka reports are explained
after running (on Linux use colon, on Windows use semicolon to separate jar
paths):

java -cp [path-to-weka.jar]:[path-to-rseslib.jar]

weka.classifiers.rules.AQ15 -h

The classi�er can be stored in a �le (see Section 5.6).

Parameters:

� coverage - as in Section 11.2.2

� searchWidth - as in Section 11.2.2

� margin - as in Section 11.2.2

� ruleVoting (TRUE/FALSE) - if TRUE, the decision is voted by all rules
matching a classi�ed object; if FALSE, only one best rule matching the
object is used to assign a decision

70

13.7 Neural network

Authors: Jakub Sakowicz, Damian Wójcik

Rseslib class path:

rseslib.processing.classification.neural.NeuralNetwork

Weka class path:

weka.classifiers.functions.RseslibNN

Description:

The classi�er runs a number of rounds, in each round it shu�es randomly the
training set and trains a network starting with the same network structure
but with random connection weights. The network with the best accuracy on a
validation set is selected as the �nal model. The number of rounds is determined
by the time limit given as a parameter.

In each round the classi�er updates the connection weights using the classical
backpropagation algorithm and sigmoid activation functions for all neurons [22].
A round ends when the network does not improve anymore or 75 iterations is
run.

The classi�er is available in Weka after installing Rseslib package (see Chapter
14). One-letter options of the classi�er displayed in Weka reports are explained
after running (on Linux use colon, on Windows use semicolon to separate jar
paths):

java -cp [path-to-weka.jar]:[path-to-rseslib.jar]

weka.classifiers.functions.RseslibNN -h

71

Neural networks can be visualized using QMAK program (see Chapter 15).
Visualization of a model presents the neurons and the connections between
them. The neurons from the last layer correspond to decisions. The color of a
connection represents its weight as it is de�ned in the legend. A user can select
a neuron to display the exact weights of its input connections and its bias. They
can also modify a trained network by adding new neurons in hidden layers and
retraining the network. The learning process can be displayed live after setting
the showTraining parameter.

Visualization of single object classi�cation presents also the strength of the
output signal from each neuron with intensity of its color, and the exact value
of the signal after click on a selected node.

The classi�er can be stored in a �le (see Section 5.6).

Parameters:

� timeLimit - time limit on searching for the optimal network (in seconds)

� automaticNetworkStructure (TRUE/FALSE) - if TRUE, the classi�er uses
a network structure with one hidden layer and the number of neurons in
this layer computed algorithmically; if FALSE, the network structure is
de�ned by a user

� hiddenLayersSize - used only if automaticNetworkStructure is FALSE, it
de�nes the numbers of neurons in the hidden layers (separated by semi-
colons), for example the value 7;5;3 means that the network structure has
3 hidden layer, the �rst hidden layer has 7 neurons, the second layer has
5 neurons and the third layer has 3 neurons

� initialAlpha - initial value of the learning speed coe�cient α in the back-
propagation algorithm, the coe�cient decreases over time

� targetAccuracy - target accuracy of classi�cation (%); when the target is
achieved on the validation set the learning process is stopped

� showTraining (TRUE/FALSE) - can be set to TRUE only in QMAK, then
the network displays the changing connection weights during training

13.8 Naive Bayes

Author: �ukasz Ligowski

Rseslib class path:

rseslib.processing.classification.bayes.NaiveBayes

Description:

72

The classi�er estimates conditional probability of object value for di�erent deci-
sions and during object classi�cation it maximizes decision probability for given
object values. It is based on Bayes theorem:

P (dec = d | −→x) =
P (−→x | dec = d) · P (dec = d)

P (−→x)

Naive Bayes classi�er estimates conditional probability of attributes value in-
dependently and calculates absolute conditional probability assuming indepen-
dence of attributes.

For symbolic attributes, the classi�er estimates probability of x value for a given
decision using m-estimate:

p(x | dec = d) =
Nx + m

Q

N +m

where N is the number of objects in a decision class, Nx is the number of objects
in a decision class with the value x on the estimated attribute, Q is the number
of possible values of estimated attribute and m is the parameter of distribution.
Value m = 0 means just frequency of x occurence in a decision class.

For numerical attributes, the classi�er estimates probability of x value for a given
decision using continuous distribution and kernel functions. The probability is
de�ned using density function:

p(x | dec = d) =
1

Nh

N∑
i

ϕ
(x− xi

h

)
where N is the number of objects in a decision class, h is smoothness parameter
(the greater h value the smoother distribution), xi is a value of a training object
from a given decision class on an estimated attribute and ϕ is a kernel function.
There are two types of such functions:

ϕ(y) =

{
1 if |y| ≤ 1

2

0 otherwise
hypercube

ϕ(y) =
1√
2π

(
exp−|y|2

2

)
Gaussian

Estimations are made after removing missing values on an estimated attribute.

Parameters:

� mEstimateParameter - m-estimate parameter, used for symbolic values

� kernel - type of kernel function, used for numerical values:

� gaussian

� hypercube

� smoothness - the parameter smoothing kernel functions, de�nes h in the
formula for function density

73

13.9 Support vector machine

Author: Witold Wojtyra

Rseslib class path:

rseslib.processing.classification.svm.SupportVectorMachine

Description:

Detailed description and analysis of SVM model and classi�er can be found in
[35]. The SVM classi�er classi�es only numeric data. Data objects are treated as
vectors of Rnspace, where n is the number of attributes. Using kernel transfor-
mations the classifer projects data from Rn to H, where searching for dependen-
cies between data is simpler. Classi�er training is based on �nding hyper-plane
in H that separates data with di�erent values of decision attribute (this prob-
lem is solved by numeric optimization a quadratic function in this space). To

enable multi-decision classi�cation
k(k − 1)

2
binary classi�ers are constructed

and the decision for each data object is selected by voting (the winner is the
most voted decision). To make the method insensitive to noise in data, it is
possible to classify with error (then some training objects are misclassi�ed - we
aim at obtaining the most general classi�cation model).

The output of the training phase are weight coe�cients α for each training data
object. The coe�cients have non-zero values for support vectors (the name of
the method is taken from these vectors). The classi�cation phase calculates a
decision function depending on α parameters.

Selection of kernel transformation has a large in�uence on classi�cation. Kernel
transformations enable to �nd complex dependencies in data. The following ker-
nel transformations are implemented (x and y denote vectors from data space):

1. Linear transformation
K(x, y) = ⟨x · y⟩

2. Polynomial transformation

K(x, y) = (⟨x · y⟩+ a)d

a, d ∈ R

3. Gaussian transformation (RBF � Radial Basis Function)

K(x, y) = e
−
∥x− y∥2

2σ2

σ ∈ R -standard deviation

74

4. Exponential transformation

K(x, y) = e
−
∥x− y∥
2σ2

σ ∈ R

5. Sigmoid transformation

K(x, y) = tanh(ρ ⟨x · y⟩+ θ)

ρ, θ ∈ R

Parameters:

� C � describes penalty coe�cient for incorrect classi�action. The greater it
is, the more restrictive classi�cation is. Too great value of this parameter
causes slow down of the method

� tolerance � coe�cient of tolerance when real values are compared. It is
used during heuristic selection of points that are optimized. Too great
value of this parameter causes that too many α coe�cients are optimized
(the number of iterations increases) and it can result in noticable decrease
of method e�ciency. Too small values of this parameter make the method
sensitive to rounding errors

� epsilon � the classi�er stops where all input vectors satisfy Karush-Kuhn-
Tucker conditions. The epsilon coe�cient denotes acceptable error during
calculation of condition value for every point. The greater coe�cient, the
faster the method but the smaller classi�cation accuracy

� kernel � kernel transformation, the possible values are: linear, polynomial,
rbf, expotential, sigmoid

� polynomial_degree � polynomial transformation parameter

� polynomial_add � polynomial transformation parameter

� rbf_sigma � gaussian transformation parameter

� expotential_sigma - exponential transformation parameter

� sigmoid_kappa - sigmoid transformation parameter

� sigmoid_theta - sigmoid transformation parameter

75

Hints:

Setting correct parameters is very important during classi�cation. Especially
C parameter (the greater values of this parameter, the greater penalties for in-
correct classi�cation). Setting too great value causes noticeable algorithm slow
down. For more complex data it can be noticed easier, because algorithm is
searching adequate separating plane with too small tolerance. It causes that
for data like letters recognition, the classi�er can not �nish for parameters C
greater than 1. For less complex data the limit is about 100. For very easy
data the algorithm executes e�ciently for all values of parameter C. Further-
more changing the parameter does not make essential change of classi�cation
correctness. The classi�er SupportVectorMachine achives the best accuracy for
C parameter from ⟨0.05, 0.5⟩.

The parameters of each kernel transformation have the greatest in�uence on
classi�cation accuracy. But it is hard to �nd a simple rule. The same parameters
values causes extremely di�erent results for di�erent types of data, e.g. for
spectro-metric data with polynomial transformation, the classi�er gains very
similar accuracy for any polynomial degree. But for thyroid illness data, the
polynomial degree two gains noticeably worse results than polynomials of higher
degree. Concluding, setting adequate parameters value is strongly related to
analysed data.

76

13.10 Classi�er based on principal components
analysis

Authors: Rafaª Falkowski, �ukasz Kowalski

Rseslib class path:

rseslib.processing.classification.parameterised.pca.PrincipalComponentNetwork

Description:

The classi�er �nds a separate model of principal components for each decision
class using Oja-RLS rule. A detailed description and analysis of this classi�ca-
tion model can be found in [3, 4].

The classi�er can be visualized using QMAK program (see Chapter 15). Visu-
alization of PCA classi�er projects all training objects onto the plane spanned
by a selected pair of principal components of the model for a selected decision
class. The objects of each decision class are marked with a di�erent color. The
objects closer to the plane are represented by larger dots, the ones more distant
from the plane are represented by smaller dots. A user can switch between
di�erent decision classes and di�errent pairs of principal components.

Visualization of single object classi�cation by a PCA classi�er marks additionaly
the position of the classi�ed object on the presented plane with a black circle.

77

Parameters:

� principalSubspaceDim - maximal number of principal components for a
single decision class; the actual number of principal components is opti-
mized during training

13.11 Classi�er based on local principal compo-
nents analysis

Author: Rafaª Falkowski

Rseslib class path:

rseslib.processing.classification.parameterised.pca.LocalPrincipalComponentNetwork

Description:

A detailed description and analysis of the classi�cation model are available in
[4]. The classi�er �nds several local models for each decision class.

Parameters:

� principalSubspaceDim - like in Section 13.10

� noOfLocalLinearModels - number of local models created for every decision
class

13.12 Bagging

Author: Sebastian Stawicki

Rseslib class path:

rseslib.processing.classification.meta.Bagging

Description:

Metaclassi�er which combines a number of �weak� classi�ers to obtain one
�strong� classi�er proposed by Breiman [1].

Parameters:

� baggingWeakClassi�ersClass - classi�er type used as �weak� classi�er, given
as class path

� baggingNumberOfIterations - number of iterations training �weak� classi-
�ers

� baggingUseWeakClassi�ersDefaultProperties (TRUE/FALSE) - if TRUE
the classi�er uses default parameters of �weak� classi�er, if FALSE Bag-
ging classi�er expects that besides its parameters it is provided with all
parameters of weak classi�er as well.

78

13.13 AdaBoost

Author: Sebastian Stawicki

Rseslib class path:

rseslib.processing.classification.meta.AdaBoost

Description:

Metaclassi�er which combines a number of �weak� classi�ers to obtain one
�strong� classi�er proposed by Shapire [23, 24]. The experimental results from
enhancing rule classi�ers from Rseslib with AdaBoost method can be found in
[30].

Parameters:

� adaBoostWeakClassi�ersClass - classi�er type used as �weak� classi�er,
given as class path

� adaBoostNumberOfIterations - number of iterations training �weak� clas-
si�ers

� adaBoostUseWeakClassi�ersDefaultProperties (TRUE/FALSE) - if TRUE
the classi�er uses default parameters of �weak� classi�er, if FALSE Ad-
aBoost classi�er expects that besides its parameters it is provided with all
parameters of weak classi�er as well.

79

Chapter 14

WEKA

Six Rseslib classi�ers with full con�guration:

� Rough set based rule classi�er (Section 13.1)

� K nearest neighbours / RIONA (Section 13.2)

� K nearest neighbours with local metric induction (Section 13.3)

� RIONIDA (Section 13.4)

� AQ15 rule classi�er (Section 13.6)

� Neural network (Section 13.7)

are available as an o�cial Weka package for testing and experimenting in Weka.
The package requires Weka version 3.8.0 or newer. To install Rseslib classi�ers
in Weka use the following steps:

1. Download and install Weka

2. Run Weka GUI Chooser

3. Select Tools -> Package manager from menu

4. Press Refresh repository cache if you use already installed Weka

5. Select Rseslib from the list of available packages

6. Press Install

7. Restart Weka

Setting the option debug to True make Rseslib classi�ers report progress of
learning to the console.

80

Chapter 15

QMAK: Interaction with
classi�ers and their
visualization

Authors: Arkadiusz Wojna, Katarzyna Jachim, Damian Ma«ski, Michaª Ma«ski,
Krzysztof Mroczek, Robert Piszczatowski, Maciej Próchniak, Tomasz Roma«czuk,
Piotr Skibi«ski, Marcin Staszczyk, Michaª Szostakiewicz, Leszek Tur, Damian
Wójcik, Maciej Zuchniak

QMAK [33] is a graphical user interface dedicated to Rseslib library. Interaction
with trained classi�ers and visualization of classi�cation models and classi�ca-
tion process are the main features of the tool. It helps to understand why a

81

trained model selects a particular decision and how much it is sure of the as-
signed decision. The tool allows a user to �nd out which element of a model
needs to be improved and to modify a model interactively. QMAK provides the
following features:

� visualization of data, classi�ers and single object classi�cation

� interactive classi�er modi�cation by a user

� classi�cation of test data with presentation of misclassi�ed objects

� experiments comparing classi�cation accuracy of classi�ers with various
test types: single train-and-classify test, cross-validation, multiple test
with random train-and-classify split, multiple cross-validation

Five Rseslib classi�ers provides model visualization and classi�cation visualiza-
tion in QMAK:

� Rough set based rule classi�er (Section 13.1)

� K nearest neighbors (Section 13.2)

� C4.5 decision tree (Section 13.5)

� Neural network (Section 13.7)

� Classi�er based on principal component analysis (Section 13.10)

The details of visualization of a particular classi�er can be found in the speci�ed
section.

To run QMAK download the latest rseslib package from http://rseslib.mimuw.edu.pl,
unpack the package and run the script qmak.sh (on Linux) or qmak.bat (on Win-
dows). Java 8 or later needs to be installed in the system. If Rseslib is compiled
from the source then to start QMAK run the class rseslib.qmak.QmakMain

with Weka jar, jfreechart-0.9.21.jar and jcommon-0.9.6.jar added to the class
path.

5-minute video demonstrating QMAK is available at http://rseslib.mimuw.edu.pl/qmak.
Help on QMAK can be found in the main menu of the application. More detailed
description of QMAK can be found in [33].

15.1 Extending QMAK

Users can implement new classi�ers and their visualization and add them easily
to QMAK. The platform is designed to make addition of both new classi�cation
models and their visualization as simple as possible. It is intended to allow users

82

implement visualization of their classi�ers in such way that they do not need to
have any knowledge of how QMAK is implemented. To achive that, a simple
interface with two methods is de�ned (see Section 12.4).

After implementation of the two interface methods in the source code of a classi-
�er and restarting QMAK with the compiled new code added to the class path a
user can easily make QMAK know and use the new classi�er using the Add clas-
si�er type command from the menu or by adding an entry in the con�guration
�le. It does not require any change in QMAK itself.

83

Chapter 16

SGM: Computing many
experiments on many
computers/cores

Author: Rafaª Latkowski

Simple Grid Manager (SGM) is a tool for running many Rseslib-based experi-
ments on a cluster of interconnected computers. SGM simplify running massive
experiments (many experiments de�ned in script �les) so it can be used to auto-
mate experiments even without utilizing parallel/distributed functionality (i.e.
server & node on single machine). Additionally it allows to utilize many cores
on single machine (i.e. many nodes on single machine). User do not need to
explicitly con�gure cluster. Each computer successfully connected with server
(or node relying mechanism) compose the cluster. Moreover user can write own
classes similar to the other in rseslib.processing.classi�cation and use them in
massive/distrbuted experiments.

The main features of the program:

� Capability of train-and-test experiments applied to any classi�er from Rs-
eslib library (or other similar classes)

� Optimized to e�ciently work in networks with unreliable connections:

� UDP instead of TCP communication to minimize delays & unreliable
network issues.

� Lack of calls that can block network subsytem of operating system
(e.g. reverse-DNS-lookup).

� Communication between SGM components designed to work with
existing �rewalls and switches (e.g. to utilize computers in company
network).

84

Figure 16.1: Hierarchical structure of experiment de�niton

� Relying mechanism between nodes (DAG architecture) to bypass
NAT or �rewalls on knot hosts.

� Multiplatform (java)

To run distributed experiment do the following steps:

1. Download the latest rseslib package from http://rseslib.mimuw.edu.pl

2. Copy the package to each machine and unpack it. (In modern version of
SGM (3.x) we removed the functionality of transferring missing data �les
due to e�ciency/reliability)

3. Prepare the experiment de�nition �le (as described later) on the machine
with the server

4. On one machine start the server (sgm-server.sh script on Linux, sgm-
server.bat script on Windows) passing the experiment de�nition �le as
the parameter, e.g. on Linux:
./sgm-server.sh <experiments file>

5. On each machine start the client (sgm-client.sh script on Linux, sgm-
client.bat script on Windows) providing the server name or IP address as
the parameter, e.g. on Linux:
./sgm-client.sh <server name/address> [options]

16.1 Experiment de�nition & running SGM Server

Experiments are de�ned in hierarchical way (see Figure 16.1). In order to suc-
cessfully run SGM Manager user need to de�ne her/his experiment in two types
of �les: the experiment �le and the task �le(s). Each task �le contains the list
of tasks to be executed. The server outputs one �le with results for each task
�le. The experiment �le provides the list of jobs �les to be executed.

The structure of the experiment �le is:

85

jobs_filename_1 output_filename_1

jobs_filename_2 output_filename_2

...

The structure of the �le with tasks is:

classifier_name training_file test_file param1=val1;param2=val2;...

classifier_name training_file test_file param1=val1;param2=val2;...

...

In the standard installation there is prede�ned example script �experiment.txt�
for experiment �le and �tasks.txt� for the task �le. The following example of a
single task de�nition in one line of task �le:

rseslib.processing.classification.rules.roughset.RoughSetRules

data/att_1.trn data/att_1.tst

Discretization=EqualWidth;Reducts=AllLocal;

IndiscernibilityForMissing=DiscernFromValue;

DiscernibilityMethod=OrdinaryDecisionAndInconsistenciesOmitted;

MissingValueDescriptorsInRules=TRUE

The de�nition of each job must be contained in a single line of the task �le.
Usually user does not need to specify each parameter of a classi�er, but it
is better to verify it �rst with current version of Rseslib. If a parameter is
not speci�ed then the default value is used. We can use any class that have
constructor with 3 parameters of the classes: Properties, DoubleDataTable,
Progress (as all of the classi�ers in rseslib.processing.classi�cation) and that
implements interface rseslib.processing.classi�cation.Classi�er. Any user can
write its own class, make available on class path in java runtime parameters
and execute her/his own experiments based on newly developed class.

The format of the output �le is similar to the task �le. At the end of task
description each line is appended with the task results:

stat1=val1;stat2=val2;stat3=val3;...

As described in previous section once we prepared experiment �le and one
or many task �les we are ready to start server using example scripts (sgm-
server.[sh|bat]) with mandatory parameter of experiment �le name or by in-
voking class simplegrid.BatchManagerMain with mandatory parameter of ex-
periment �le name. Server displays in console messages related to initializing
16 threads for UDP communication on prede�ned port numbers and with each

86

Figure 16.2: SGM-Node GUI displays current status of node and allows termi-
nating node manually.

communication with a node it displays a message related to sent task or received
result to/from a node. At each message displayed server also displays statistics:
number of nodes active (contacted) in last 1-5-60 minutes as well as size of the
queue of not �nished tasks already read from task �le (Queue Size) and number
of tasks currently distributed for execution at nodes (In Execution).

At the end of experiments, when number of nodes exceeds number of experi-
ments still to be executed, server tries to balance the load between machines
by redistributing last jobs to all free nodes (race on last tasks). When we are
sure that all tasks has been computed (e.g. by faster nodes) we can kill server
manually. In other case server will wait until last task is �nished and then
shutdown slowly one thread at once on con�gured network timeout (currently
it takes 16*5 seconds).

16.2 Running SGM-Node

SGM Node has its graphical user interface (see Figure 16.2) that displays cur-
rent status of connection and computations as well as allows user terminating
node manually. We can run node many times on the same machine (see next
section on cluster architecture). The node can be started either by running a
script sgm-client.[sh|bat] with mandatory parameter of server name/address or
directly by invoking class simplegrid.NodeMain with mandatory parameter of
server name/address. The node can connect with server with some delay due
to retrying communication on di�erent ports with default timeout set currently
to 5 seconds.

Node can take additional parameters:

� -DIE <time> (e.g. -DIE 15:49 or -DIE �SU 23:00�) � Sets scheduled
shutdown to particular hour:minute or day-of-week (2 characters) and
hour:minute. The node will terminate after selected amount of time. This
functionality is useful if you wish to setup experiments e.g. over the week-
end, when all computers are not used and terminate automatically on
Monday morning before employees come back to work.

� -FILEDEBUG � In many cases experiments terminates due to bad pa-
rameters, lack of data �les or insu�cient memory. In order to analyze

87

Figure 16.3: Example cluster architecture in case if Machine4 has no direct
connection to server located on Machine1 (e.g. due to NAT), but can be reached
by relying messages with SGM nodes on Machine2.

reason of error we can set the option -FILEDEBUG that writes all error
messages related to experiment execution and communication with server
to a �le named �sgm_node_log.txt� in current directory.

� -RELAY <list of relying nodes> � Enables relying connection between
nodes to avoid NAT and �rewalls. Referring to an example from next
section (see Figure 16.3) we need to include this option on Machine4 from
that example and put Machine2 address on the list of relying nodes. List
can be separated by comma or semicolon.

� -FORCERELAY� Even when relying option is con�gured, node still tries
to communicate with server directly and only if it fails then it tries to use
relying nodes. If we know that the direct communication is permanently
not possible and re-trying connection with server is only waste of time
(due to timeout-wait on each trial) we can put option -FORCERELAY.
With this option node when successfully connects to a relay node then it
never tries again direct communication with the server.

Moreover we can use standard java run-time environment options (e.g. -Xmx
to set more working memory). In case of fast ini�nite loops of scheduling tasks
user should verify sgm_node_log.txt (option -FILEDEBUG) to analyse error.
It usually is caused by standard error on the node side (e.g. insu�cient memory).
All nodes also need to have data �les available in their �lesystems in the same
directory structure as speci�ed in task �le. It is due to the fact that in modern
version of Simple Grid (>1.x) there is no functionality of data �le transfer.

16.3 Cluster architecture and message relying

Cluster of nodes in SGM is basically a tree having the server as a tree root and
SGM nodes as leaves or internal tree nodes (in case of message relying). To

88

utilize existing cores on available machines we can start more than one node
on single machine. For example on Figure 16.3 we have example how to utilize
2-core machines.

In distributed networks we sometimes face issues related to NAT (Network Ad-
dress Translation) or other type of �rewalling/tra�c �ltering that disallows
direct connection between some machines (e.g. Machine4 has no direct connec-
tivity to Machine1 on Figure 16.3). If any single machine is available for indirect
connection (e.g. Machine2 on Figure 16.3) we can use mechanism of message
relaying. Each SGM node can relay messages (UDP datagrams) from its child
(nodes on Machine4) to its parent (server on Machine1).

89

Chapter 17

Command line programs

17.1 Calculate signi�cance of attributes

An exemplary program calculating signi�cance of subsets of attributes (see
Section 7.2) and writing the coe�cients to a �le is implemented by the class
rseslib.example.AttributeSignificance. The program accepts the follow-
ing arguments:

java -cp ... rseslib.example.AttributeSignificance

[-d <discretization>] [-dcfg <discr config file>]

[-m <max no of attributes>]

<data file> [<output file>]

Warning! To use data in ARFF format the Weka jar must be added to the
class path while running the program (see Section 4.1.1).

The argument <discretization> selects a type of discretization applied to data
before an algorithm calculating attribute signi�cance is run. The possible values
are (see Section 6.2): None, EqualWidth, EqualFrequency, OneRule, Entropy-
MinimizationStatic, EntropyMinimizationDynamic, ChiMerge, MaximalDiscerni-
bilityHeuristicGlobal, MaximalDiscernibilityHeuristicLocal. The argument is op-
tional, the default value is MaximalDiscernibilityHeuristicLocal.

The optional argument <discr config file> enables to provide the path to
a �le with customized con�guration of the selected type of discretization. The
template con�guration �le with default parameter values for each con�gurable
type of discretization can be found in the resource directory in Rseslib sources:
src/main/resources/rseslib/processing/discretization/.

The argument <max no of attributes> de�nes which subsets of attributes the
signi�cance coe�cient is calculated for. The program calculates the coe�cient

90

for all subsets of the size less or equal to the value of the parameter -m. The
default value is 1.

The argument <data file> is the �le with data used to calculate the signi�-
cance of attributes.

The argument <output file> is the �le the program writes its result to. If not
given the program writes its result to the �le attribute_signi�cance.txt.

17.2 Compute and write reducts

An exemplary program computing reducts (see Chapter 10) and writing them
to a �le is implemented by the class rseslib.example.ComputeReducts. The
program accepts the following arguments:

java -cp ... rseslib.example.ComputeReducts

[-d <discretization>] [-dcfg <discr config file>]

[-r <reducts>] [-rcfg <reducts config file>]

<data file> [<output file>]

Warning! To use data in ARFF format the Weka jar must be added to the
class path while running the program (see Section 4.1.1).

The argument <discretization> selects a type of discretization applied to data
before an algorithm computing reducts is run. The possible values are (see Sec-
tion 6.2): None, EqualWidth, EqualFrequency, OneRule, EntropyMinimization-
Static, EntropyMinimizationDynamic, ChiMerge, MaximalDiscernibilityHeuris-
ticGlobal, MaximalDiscernibilityHeuristicLocal. The argument is optional, the
default value is MaximalDiscernibilityHeuristicLocal.

The optional argument <discr config file> enables to provide the path to
a �le with customized con�guration of the selected type of discretization. The
template con�guration �le with default parameter values for each con�gurable
type of discretization can be found in the resource directory in Rseslib sources:
src/main/resources/rseslib/processing/discretization/.

The argument <reducts> selects an algorithm computing reducts. The possi-
ble values are (see Section 10.3): AllLocal, AllGlobal, OneJohnson, AllJohnson,
PartialLocal, PartialGlobal. The argument is optional, the default value is All-
Global.

The optional argument <reducts config file> enables to provide the path
to a �le with customized con�guration of the selected algorithm computing
reducts. The template con�guration �le with default parameter values for each
algorithm computing reducts can be found in the resource directory in Rseslib
sources: src/main/resources/rseslib/processing/reducts/.

The argument <data file> is the �le with data used to compute reducts.

91

The argument <output file> is the �le the program writes reducts to. If not
given the program writes reducts to the �le reducts.txt.

17.3 Compute and write rules

An exemplary program computing rules (see Chapter 11) and writing them to a
�le is implemented by the class rseslib.example.ComputeRules. The program
accepts the following arguments:

java -cp ... rseslib.example.ComputeRules

[-d <discretization>] [-dcfg <discr config file>]

[-r <rules>] [-rcfg <rules config file>]

<data file> [<output file>]

Warning! To use data in ARFF format the Weka jar must be added to the
class path while running the program (see Section 4.1.1).

The argument <discretization> selects a type of discretization applied to data
before an algorithm computing rules is run. The possible values are (see Sec-
tion 6.2): None, EqualWidth, EqualFrequency, OneRule, EntropyMinimization-
Static, EntropyMinimizationDynamic, ChiMerge, MaximalDiscernibilityHeuris-
ticGlobal, MaximalDiscernibilityHeuristicLocal. The argument is optional, the
default value is MaximalDiscernibilityHeuristicLocal.

The optional argument <discr config file> enables to provide the path to
a �le with customized con�guration of the selected type of discretization. The
template con�guration �le with default parameter values for each con�gurable
type of discretization can be found in the resource directory in Rseslib sources:
src/main/resources/rseslib/processing/discretization/.

The argument <rules> selects an algorithm computing rules, either from reducts
or AQ15 or accurate rules. The possible values are (see Section 11.2): AllLocal,
AllGlobal, OneJohnson, AllJohnson, PartialLocal, PartialGlobal, AQ15, Accu-
rate. The argument is optional, the default value is AllGlobal.

The optional argument <rules config file> enables to provide the path to
a �le with customized con�guration of the selected algorithm computing rules.
The template con�guration �le with default parameter values for each algo-
rithm computing rules can be found in the resource directory in Rseslib sources:
src/main/resources/rseslib/processing/rules/.

The argument <data file> is the �le with data used to compute rules.

The argument <output file> is the �le the program writes rules to. If not
given the program writes rules to the �le rules.txt.

92

17.4 Cross-validation on Rseslib classi�ers

An exemplary program executing cross-validation test (see Section 12.7) for all
Rseslib classi�ers is implemented by the class rseslib.example.CrossValidation.
As arguments a user provides the number of cross-validation folds and a data
�le to be tested (with a header included), e.g.:

java -cp ... rseslib.example.CrossValidation 5 data/heart.dat

Warning! To use data in ARFF format the Weka jar must be added to the
class path while running the program (see Section 4.1.1).

A header must be included in the input �les.

The program writes data statistics, progress information and classi�cation re-
sults to the standard output. The program contains an example how to test a
classi�er with non-default parameters.

17.5 Train and test Rseslib classi�ers

An exemplary program executing a single test (see Section 12.6) for all Rseslib
classi�ers is implemented by the class rseslib.example.TrainAndTest. As
arguments a user provides either one data �le or two data �les (the training and
the test tables), e.g.:

java -cp ... rseslib.example.TrainAndTest data/heart.dat

Warning! To use data in ARFF format the Weka jar must be added to the
class path while running the program (see Section 4.1.1).

A header must be included in the input �les. If only one data �le is provided
the program splits the data randomly into the training and the test parts with
the ratio 2:1.

The program writes data statistics, progress information and classi�cation re-
sults to the standard output. The program contains an example how to test a
classi�er with non-default parameters.

93

Bibliography

[1] L. Breiman. Bagging predictors. Machine learning, 24(2):123�140, 1996.

[2] F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations. Kluwer
Academic Publishers, Dordrecht, 1990.

[3] K. I. Diamantaras and S. Y. Kung. Principal Component Neural Networks:
Theory and Applications. John Wiley & Sons, Inc., New York, 1996.

[4] R. Falkowski. Metoda skªadowych gªównych w rozpoznawaniu obiektów.
Master's thesis, Faculty of Mathematics, Informatics and Mechanics, War-
saw University, 2004.

[5] U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued
attributes for classi�cation learning. In Proceedings of the 13th Interna-
tional Joint Conference on Arti�cial Intelligence, pages 1022�1027. Morgan
Kaufmann, 1993.

[6] G. Góra. Combinig instance-based learning and rule-based methods for im-
balanced data. PhD thesis, Warsaw University, 2021.

[7] G. Góra and A. Skowron. Rionida: A novel algorithm for imbalanced
data combining instance-based learning and rule induction. Information
Sciences, 708:122015, 2025.

[8] G. Góra and A. G. Wojna. RIONA: a classi�er combining rule induction
and k-nn method with automated selection of optimal neighbourhood. In
Proceedings of the 13th European Conference on Machine Learning, volume
2430 of LNCS, pages 111�123. Springer-Verlag, 2002.

[9] R. C. Holte. Very simple classi�cation rules perform well on most commonly
used datasets. Machine learning, 11(1):63�90, 1993.

[10] M. Jaªmu»na. Porównawcza analiza algorytmów dyskretyzacji. Master's
thesis, Faculty of Mathematics, Informatics and Mechanics, Warsaw Uni-
versity, 2009.

[11] D. S. Johnson. Approximation algorithms for combinatorial problems.
Journal of computer and system sciences, 9(3):256�278, 1974.

94

[12] R. Kerber. Chimerge: Discretization of numeric attributes. In Proceedings
of the 10th National Conference on Arti�cial Intelligence, pages 123�128.
Aaai Press, 1992.

[13] R. Latkowski. Flexible indiscernibility relations for missing attribute values.
Fundamenta Informaticae, 67(1-3):131�147, 2005.

[14] R. S. Michalski, I. Mozetic, J. Hong, and H. Lavrac. The multi-purpose
incremental learning system AQ15 and its testing application to three med-
ical domains. In Proceedings of the Fifth National Conference on Arti�cial
Intelligence, pages 1041�1045, 1986.

[15] M. Moshkov, M. Piliszczuk, and B. Zielosko. Partial covers, reducts and
decision rules in rough sets: Theory and applications. Studies in Compu-
tational Intelligence, 145, 2008.

[16] H. S. Nguyen. Discretization of Real Value Attributes: A Boolean Reasoning
Approach. PhD thesis, Warsaw University, 1997.

[17] H. S. Nguyen and D. �l¦zak. Approximate reducts and association rules
- correspondence and complexity results. In N. Zhong, A. Skowron, and
S. Ohsuga, editors, Proceedings of the International Workshop on Rough
Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, volume 1711
of LNCS, pages 137�145. Springer, 1999.

[18] W. Ogórek. Zbiory przybli»one w zadaniu generowania reguª decyzyjnych.
Master's thesis, Wroclaw University of Science and Technology, 2011.

[19] Z. Pawlak. Rough Sets - Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers, Dordrecht, 1991.

[20] Z. Pawlak and A. Skowron. Rudiments of rough sets. Information sciences,
177(1):3�27, 2007.

[21] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA, 1993.

[22] S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach. Pren-
tice Hall, 2003.

[23] R. E. Schapire. A brief introduction to boosting. In Proceedings of the
Sixteenth International Joint Conference on Arti�cial Intelligence, pages
1401�1406, 1999.

[24] R. E. Schapire. Theoretical views of boosting. In Proceedings of the
Fourth European Conference on Computational Learning Theory, pages 1�
10. Springer, 1999.

95

[25] A. Skowron. Boolean reasoning for decision rules generation. In J. Ko-
morowski and Z. W. Ra±, editors, Proceedings of the 7th International
Symposium on Methodologies for Intelligent Systems, volume 689 of LNCS,
pages 295�305. Springer, 1993.

[26] A. Skowron and J. W. Grzymaªa-Busse. From rough set theory to evidence
theory. In R. R. Yager, J. Kacprzyk, and M. Fedrizzi, editors, Advances in
the Dempster-Shafer Theory of Evidence, pages 193�236. Wiley, New York,
1994.

[27] A. Skowron and C. Rauszer. The discernibility matrices and functions in
information systems. In R. Slowinski, editor, Intelligent Decision Support,
Handbook of Applications and Advances of the Rough Sets Theory, pages
331�362. Kluwer Academic Publishers, Dordrecht, 1992.

[28] A. Skowron and A. Wojna. K nearest neighbors classi�cation with local
induction of the simple value di�erence metric. In Proceedings of the 4th
International Conference on Rough Sets and Current Trends in Computing,
volume 3066 of LNCS, pages 229�234. Springer-Verlag, 2004.

[29] R. Sªowi«ski and J. Stefanowski. Rough classi�cation in incomplete infor-
mation systems. Mathematical and Computer Modelling, 12(10-11):1347�
1357, 1989.

[30] S. Stawicki. Wzmacnianie klasy�katorów reguªowych. Master's thesis, Fac-
ulty of Mathematics, Informatics and Mechanics, Warsaw University, 2007.

[31] A. Wojna. Center-based indexing for nearest neighbors search. In Pro-
ceedings of the 3rd IEEE International Conference on Data Mining, pages
681�684. IEEE Computer Society Press, 2003.

[32] A. Wojna. Analogy-based reasoning in classi�er construction (phd thesis).
LNCS Transactions on Rough Sets IV, 3700:277�374, 2005.

[33] A. Wojna, K. Jachim, �. Kosson, �. Kowalski, D. Ma«ski, M. Ma«ski,
K. Mroczek, K. Niemkiewicz, R. Piszczatowski, M. Próchniak, T. Ro-
ma«czuk, P. Skibi«ski, M. Staszczyk, M. Szostakiewicz, L. Tur, D. Wójcik,
and M. Zuchniak. Qmak: Interacting with machine learning models and
visualizing classi�cation process. In Proceedings of the 18th Conference on
Computer Science and Intelligence Systems, volume 35 of ACSIS, pages
315�318. IEEE, 2023.

[34] A. Wojna and R. Latkowski. Rseslib 3: Library of rough set and ma-
chine learning methods with extensible architecture. LNCS Transactions
on Rough Sets XXI, 10810:301�323, 2019.

[35] W. Wojtyra. Implementacja klasy�katora opartego o maszyne wektorów
wspierajacych. Master's thesis, Faculty of Mathematics, Informatics and
Mechanics, Warsaw University, 2005.

96

[36] J. Wróblewski. Covering with reducts - a fast algorithm for rule gener-
ation. In Proceedings of the 1st International Conference on Rough Sets
and Current Trends in Computing, volume 1424 of LNCS, pages 402�407.
Springer-Verlag, 1998.

97

	Introduction
	Overview
	Development and runtime environment
	Modular component-based architecture
	Processing algorithms
	Data-related objects
	Library structure

	Logging
	Data
	Formats
	ARFF
	CSV
	RSES2

	Data header
	Data representation
	Data table and its statistics
	Loading and saving data
	Vectors and value distributions

	Framework for algorithms
	Input to algorithms
	Configuration parameters
	Reporting progress
	Measuring time
	Statistics from computations
	Saving and loading

	Discretization
	Applying discretization to data
	Discretization types
	Equal Width
	Equal Frequency
	One Rule
	Static Entropy Minimization
	Dynamic Entropy Minimization
	ChiMerge
	Global Maximal Discernibility Heuristic
	Local Maximal Discernibility Heuristic

	Attribute evaluation
	Approximation accuracy
	Attribute significance

	Rough sets
	Lower and upper approximation
	Positive region

	Discernibility matrix
	Reducts
	Reduct types
	Reduct representation
	Computing reducts
	All global reducts
	All local reducts
	Johnson's reducts
	Partial reducts

	Rules
	Rules representation
	Rule types
	Universal boolean function based rules
	Optimized rules with equality descriptors

	Generating rules
	Generating rules from reducts
	AQ15 algorithm
	Exemplary rule generator

	Classification and experiments
	Classifiers
	Rule-based classifiers
	Porting Rseslib-based classifiers to Weka
	Visualization
	Single classifier test and classification results
	Training and testing many classifiers
	Crossvalidation and multiple tests

	Classifier types
	Rough set based rule classifier
	K nearest neighbours / RIONA
	K nearest neighbours with local metric induction
	RIONIDA
	Decision tree C4.5
	Rule classifier AQ15
	Neural network
	Naive Bayes
	Support vector machine
	Classifier based on principal components analysis
	Classifier based on local principal components analysis
	Bagging
	AdaBoost

	WEKA
	QMAK: Interaction with classifiers and their visualization
	Extending QMAK

	SGM: Computing many experiments on many computers/cores
	Experiment definition & running SGM Server
	Running SGM-Node
	Cluster architecture and message relying

	Command line programs
	Calculate significance of attributes
	Compute and write reducts
	Compute and write rules
	Cross-validation on Rseslib classifiers
	Train and test Rseslib classifiers

	Bibliography

